956 resultados para Port, DNS
Resumo:
Ultrafast self-switching of spectral-amplitude-encoded 40 Gb/s DPSK signals is demonstrated for the first time. Switching between 21 ports with 15nm maximum bin separation is achieved using a single correlator based on HNLF and an AWG. © 2009 IEEE.
Resumo:
Species composition and some aspects of the biology of the fouling community in Neendakara port (southwest coast of India) has been examined for a period of one year. Fouling organisms were collected with a system of glass panels exposed for varying durations and during different months in the port. One species of sponge, nine species of coelenterates, thirteen species of polyzoans, four species of mud-tube dwelling polychaetes, four species of serpulids, one species each of mud-tube forming amphipod and tanaid, two species of oysters, six species of mussels and not less than eight species of tunicates were the macro fouler which settled over the panels. Monthly and seasonal settlement of the different species has been recorded. Fouling has been a continuous process occurring throughout the year in Neendakara port with slightly fluctuating biomass and considerably varying species composition. Alternate species dominance of marine and brackish water forms has been an important feature of fouling in the area. Number of species of the sedentary fouling animals represented on test panels has been high during the highly saline pre-monsoon period and low during the monsoon period.
Resumo:
A parametric study of spark ignition in a uniform monodisperse turbulent spray is performed with complex chemistry three-dimensional Direct Numerical Simulations in order to improve the understanding of the structure of the ignition kernel. The heat produced by the kernel increases with the amount of fuel evaporated inside the spark volume. Moreover, the heat sink by evaporation is initially higher than the heat release and can have a negative effect on ignition. With the sprays investigated, heat release occurs over a large range of mixture fractions, being high within the nominal flammability limits and finite but low below the lean flammability limit. The burning of very lean regions is attributed to the diffusion of heat and species from regions of high heat release, and from the spark, to lean regions. Two modes of spray ignition are reported. With a relatively dilute spray, nominally flammable material exists only near the droplets. Reaction zones are created locally near the droplets and have a non-premixed character. They spread from droplet to droplet through a very lean interdroplet spacing. With a dense spray, the hot spark region is rich due to substantial evaporation but the cold region remains lean. In between, a large surface of flammable material is generated by evaporation. Ignition occurs there and a large reaction zone propagates from the rich burned region to the cold lean region. This flame is wrinkled due to the stratified mixture fraction field and evaporative cooling. In the dilute spray, the reaction front curvature pdf contains high values associated with single droplet combustion, while in the dense spray, the curvature is lower and closer to the curvature associated with gaseous fuel ignition kernels. © 2011 The Combustion Institute.
Resumo:
Three-dimensional direct numerical simulation (DNS) of exhaust gas recirculation (EGR)-type turbulent combustion operated in moderate and intense low-oxygen dilution (MILD) condition has been carried out to study the flame structure and flame interaction. In order to achieve adequate EGR-type initial/inlet mixture fields, partially premixed mixture fields which are correlated with the turbulence are carefully preprocessed. The chemical kinetics is modelled using a skeletal mechanism for methane-air combustion. The results suggest that the flame fronts have thin flame structure and the direct link between the mean reaction rate and scalar dissipation rate remains valid in the EGR-type combustion with MILD condition. However, the commonly used canonical flamelet is not fully representative for MILD combustion. During the flame-flame interactions, the heat release rate increases higher than the maximum laminar flame value, while the gradient of progress variable becomes smaller than laminar value. It is also proposed that the reaction rate and the scalar gradient can be used as a marker for the flame interaction. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
Direct Numerical Simulations (DNS) of turbulent n-heptane sprays autoigniting at high pressure (P=24bar) and intermediate air temperature (Tair=1000K) have been performed to investigate the physical mechanisms present under conditions where low-temperature chemistry is expected to be important. The initial turbulence in the carrier gas, the global equivalence ratio in the spray region, and the initial droplet size distribution of the spray were varied. Results show that spray ignition exhibits a spotty nature, with several kernels developing independently in those regions where the mixture fraction is close to its most reactive value ξMR (as determined from homogeneous reactor calculations) and the scalar dissipation rate is low. Turbulence reduces the ignition delay time as it promotes mixing between air and the fuel vapor, eventually resulting in lower values of scalar dissipation. High values of the global equivalence ratio are responsible for a larger number of ignition kernels, due to the higher probability of finding regions where ξ=ξMR. Spray polydispersity results in the occurrence of ignition over a wider range of mixture fraction values. This is a consequence of the inhomogeneities in the mixing field that characterize these sprays, where poorly mixed rich spots are seen to alternate with leaner ones which are well-mixed. The DNS simulations presented in this work have also been used to assess the applicability of the Conditional Moment Closure (CMC) method to the simulation of spray combustion. CMC is found to be a valid method for capturing spray autoignition, although care should be taken in the modelling of the unclosed terms appearing in the CMC equations. © 2013 The Combustion Institute.