475 resultados para Polyurethane prepolymer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of highly functionalised poly allyl alcohol films by pulsed plasma polymerisation of CH2 double bond; length as m-dashCHCH2OH on biomedical grade polyurethane has been followed by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. Film thickness is observed to increase approximately linearly with plasma modification time, suggesting a layer-by-layer growth mode of poly allyl alcohol. Water contact angle measurements reveal the change in the surface free energy of wetting decreases linearly with plasma modification up to the monolayer point after which a constant limiting value of −24 mJ m−2 was attained. Films prepared at 20 W plasma power with a duty cycle of 10 μs:500 μs exhibit a high degree of hydroxyl (single bondOH) retention with minimal fragmentation of the monomer observed. Increasing the plasma power up to 125 W is found to improve single bondOH retention at the expense of ether formation generating films close to the monomer stoichiometry. Duty cycle plays an important role in controlling both film composition and thickness, with longer off times increasing single bondOH retention, while longer on times enhance allyl alcohol film growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(l-lactide) (PLL) has been blended with a polycaprolactone-based thermoplastic polyurethane (TPU) elastomer as a toughening agent and a poly(l-lactide-co-caprolactone) (PLLCL) copolymer as a compatibilizer. Both 2-component (PLL/TPU) and 3-component (PLL/TPU/PLLCL) blends were prepared by melt mixing, characterized, hot-pressed into thin sheets and their tensile properties tested. The results showed that, although the TPU could toughen the PLL, the blends were largely immiscible leading to phase separation. However, addition of the PLLCL copolymer improved blend compatibility. The best all-round properties were found for the 3-component blend of composition PLL/TPU/PLLCL = 90/10/10 parts by weight.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteotomy or bone cutting is a common procedure in orthopaedic surgery, mainly in the treatment of fractures and reconstructive surgery. However, the excessive heat produced during the bone drilling process is a problem that counters the benefits of this type of surgery, because it can result in thermal osteonecrosis, bone reabsorption and damage the osseointegration of implants. The analysis of different drilling parameters and materials can allow to decrease the temperature during the bone drilling process and contribute to a greater success of this kind of surgical interventions. The main goal of this study was to build a numerical three-dimensional model to simulate the drilling process considering the type of bone, the influence of cooling and the bone density of the different composite materials with similar mechanical properties to the human bone and generally used in experimental biomechanics. The numerical methodology was coupled with an experimental methodology. The use of cooling proved to be essential to decrease the material damage during the drilling process. It was concluded that the materials with less porosity and density present less damage in drilling process. The developed numerical model proved to be a great tool in this kind of analysis. © 2016, The Brazilian Society of Mechanical Sciences and Engineering.