981 resultados para Polynomial time hierarchy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Credal networks are graph-based statistical models whose parameters take values in a set, instead of being sharply specified as in traditional statistical models (e.g., Bayesian networks). The computational complexity of inferences on such models depends on the irrelevance/independence concept adopted. In this paper, we study inferential complexity under the concepts of epistemic irrelevance and strong independence. We show that inferences under strong independence are NP-hard even in trees with binary variables except for a single ternary one. We prove that under epistemic irrelevance the polynomial-time complexity of inferences in credal trees is not likely to extend to more general models (e.g., singly connected topologies). These results clearly distinguish networks that admit efficient inferences and those where inferences are most likely hard, and settle several open questions regarding their computational complexity. We show that these results remain valid even if we disallow the use of zero probabilities. We also show that the computation of bounds on the probability of the future state in a hidden Markov model is the same whether we assume epistemic irrelevance or strong independence, and we prove an analogous result for inference in Naive Bayes structures. These inferential equivalences are important for practitioners, as hidden Markov models and Naive Bayes networks are used in real applications of imprecise probability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Influence diagrams are intuitive and concise representations of structured decision problems. When the problem is non-Markovian, an optimal strategy can be exponentially large in the size of the diagram. We can avoid the inherent intractability by constraining the size of admissible strategies, giving rise to limited memory influence diagrams. A valuable question is then how small do strategies need to be to enable efficient optimal planning. Arguably, the smallest strategies one can conceive simply prescribe an action for each time step, without considering past decisions or observations. Previous work has shown that finding such optimal strategies even for polytree-shaped diagrams with ternary variables and a single value node is NP-hard, but the case of binary variables was left open. In this paper we address such a case, by first noting that optimal strategies can be obtained in polynomial time for polytree-shaped diagrams with binary variables and a single value node. We then show that the same problem is NP-hard if the diagram has multiple value nodes. These two results close the fixed-parameter complexity analysis of optimal strategy selection in influence diagrams parametrized by the shape of the diagram, the number of value nodes and the maximum variable cardinality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Credal networks are graph-based statistical models whose parameters take values on a set, instead of being sharply specified as in traditional statistical models (e.g., Bayesian networks). The result of inferences with such models depends on the irrelevance/independence concept adopted. In this paper, we study the computational complexity of inferences under the concepts of epistemic irrelevance and strong independence. We strengthen complexity results by showing that inferences with strong independence are NP-hard even in credal trees with ternary variables, which indicates that tractable algorithms, including the existing one for epistemic trees, cannot be used for strong independence. We prove that the polynomial time of inferences in credal trees under epistemic irrelevance is not likely to extend to more general models, because the problem becomes NP-hard even in simple polytrees. These results draw a definite line between networks with efficient inferences and those where inferences are hard, and close several open questions regarding the computational complexity of such models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Semi-qualitative probabilistic networks (SQPNs) merge two important graphical model formalisms: Bayesian networks and qualitative probabilistic networks. They provide a very general modeling framework by allowing the combination of numeric and qualitative assessments over a discrete domain, and can be compactly encoded by exploiting the same factorization of joint probability distributions that are behind the Bayesian networks. This paper explores the computational complexity of semi-qualitative probabilistic networks, and takes the polytree-shaped networks as its main target. We show that the inference problem is coNP-Complete for binary polytrees with multiple observed nodes. We also show that inferences can be performed in linear time if there is a single observed node, which is a relevant practical case. Because our proof is constructive, we obtain an efficient linear time algorithm for SQPNs under such assumptions. To the best of our knowledge, this is the first exact polynomial-time algorithm for SQPNs. Together these results provide a clear picture of the inferential complexity in polytree-shaped SQPNs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Credal networks generalize Bayesian networks by relaxing the requirement of precision of probabilities. Credal networks are considerably more expressive than Bayesian networks, but this makes belief updating NP-hard even on polytrees. We develop a new efficient algorithm for approximate belief updating in credal networks. The algorithm is based on an important representation result we prove for general credal networks: that any credal network can be equivalently reformulated as a credal network with binary variables; moreover, the transformation, which is considerably more complex than in the Bayesian case, can be implemented in polynomial time. The equivalent binary credal network is then updated by L2U, a loopy approximate algorithm for binary credal networks. Overall, we generalize L2U to non-binary credal networks, obtaining a scalable algorithm for the general case, which is approximate only because of its loopy nature. The accuracy of the inferences with respect to other state-of-the-art algorithms is evaluated by extensive numerical tests.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents new results for the (partial) maximum a posteriori (MAP) problem in Bayesian networks, which is the problem of querying the most probable state configuration of some of the network variables given evidence. It is demonstrated that the problem remains hard even in networks with very simple topology, such as binary polytrees and simple trees (including the Naive Bayes structure), which extends previous complexity results. Furthermore, a Fully Polynomial Time Approximation Scheme for MAP in networks with bounded treewidth and bounded number of states per variable is developed. Approximation schemes were thought to be impossible, but here it is shown otherwise under the assumptions just mentioned, which are adopted in most applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a new algorithm for exactly solving decision making problems represented as influence diagrams. We do not require the usual assumptions of no forgetting and regularity; this allows us to solve problems with simultaneous decisions and limited information. The algorithm is empirically shown to outperform a state-of-the-art algorithm on randomly generated problems of up to 150 variables and 10^64 solutions. We show that the problem is NP-hard even if the underlying graph structure of the problem has small treewidth and the variables take on a bounded number of states, but that a fully polynomial time approximation scheme exists for these cases. Moreover, we show that the bound on the number of states is a necessary condition for any efficient approximation scheme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Influence diagrams allow for intuitive and yet precise description of complex situations involving decision making under uncertainty. Unfortunately, most of the problems described by influence diagrams are hard to solve. In this paper we discuss the complexity of approximately solving influence diagrams. We do not assume no-forgetting or regularity, which makes the class of problems we address very broad. Remarkably, we show that when both the treewidth and the cardinality of the variables are bounded the problem admits a fully polynomial-time approximation scheme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents new results for the (partial) maximum a posteriori (MAP) problem in Bayesian networks, which is the problem of querying the most probable state configuration of some of the network variables given evidence. First, it is demonstrated that the problem remains hard even in networks with very simple topology, such as binary polytrees and simple trees (including the Naive Bayes structure). Such proofs extend previous complexity results for the problem. Inapproximability results are also derived in the case of trees if the number of states per variable is not bounded. Although the problem is shown to be hard and inapproximable even in very simple scenarios, a new exact algorithm is described that is empirically fast in networks of bounded treewidth and bounded number of states per variable. The same algorithm is used as basis of a Fully Polynomial Time Approximation Scheme for MAP under such assumptions. Approximation schemes were generally thought to be impossible for this problem, but we show otherwise for classes of networks that are important in practice. The algorithms are extensively tested using some well-known networks as well as random generated cases to show their effectiveness.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Credal nets generalize Bayesian nets by relaxing the requirement of precision of probabilities. Credal nets are considerably more expressive than Bayesian nets, but this makes belief updating NP-hard even on polytrees. We develop a new efficient algorithm for approximate belief updating in credal nets. The algorithm is based on an important representation result we prove for general credal nets: that any credal net can be equivalently reformulated as a credal net with binary variables; moreover, the transformation, which is considerably more complex than in the Bayesian case, can be implemented in polynomial time. The equivalent binary credal net is updated by L2U, a loopy approximate algorithm for binary credal nets. Thus, we generalize L2U to non-binary credal nets, obtaining an accurate and scalable algorithm for the general case, which is approximate only because of its loopy nature. The accuracy of the inferences is evaluated by empirical tests.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the problem of determining whether or not a graph G has an induced matching that dominates every edge of the graph, which is also known as efficient edge domination. This problem is known to be NP-complete in general as well as in some restricted domains, such as bipartite graphs or regular graphs. In this paper, we identify a graph parameter to which the complexity of the problem is sensible and produce results of both negative (intractable) and positive (solvable in polynomial time) type. © 2009 Springer Berlin Heidelberg.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A family of quadratic programming problems whose optimal values are upper bounds on the independence number of a graph is introduced. Among this family, the quadratic programming problem which gives the best upper bound is identified. Also the proof that the upper bound introduced by Hoffman and Lovász for regular graphs is a particular case of this family is given. In addition, some new results characterizing the class of graphs for which the independence number attains the optimal value of the above best upper bound are given. Finally a polynomial-time algorithm for approximating the size of the maximum independent set of an arbitrary graph is described and the computational experiments carried out on 36 DIMACS clique benchmark instances are reported.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Muitos dos problemas de otimização em grafos reduzem-se à determinação de um subconjunto de vértices de cardinalidade máxima que induza um subgrafo k-regular. Uma vez que a determinação da ordem de um subgrafo induzido k-regular de maior ordem é, em geral, um problema NP-difícil, são deduzidos novos majorantes, a determinar em tempo polinomial, que em muitos casos constituam boas aproximações das respetivas soluções ótimas. Introduzem-se majorantes espetrais usando uma abordagem baseada em técnicas de programação convexa e estabelecem-se condições necessárias e suficientes para que sejam atingidos. Adicionalmente, introduzem-se majorantes baseados no espetro das matrizes de adjacência, laplaciana e laplaciana sem sinal. É ainda apresentado um algoritmo não polinomial para a determinação de umsubconjunto de vértices de umgrafo que induz umsubgrafo k-regular de ordem máxima para uma classe particular de grafos. Finalmente, faz-se um estudo computacional comparativo com vários majorantes e apresentam-se algumas conclusões.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tese dout., Matemática, Investigação Operacional, Universidade do Algarve, 2009

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Consider the problem of deciding whether a set of n sporadic message streams meet deadlines on a Controller Area Network (CAN) bus for a specified priority assignment. It is assumed that message streams have implicit deadlines and no release jitter. An algorithm to solve this problem is well known but unfortunately it time complexity is non-polynomial. We present an algorithm with polynomial time-complexity for computing an upper bound on the response times. Clearly, if the upper bound on the response time does not exceed the deadline then all deadlines are met. The pessimism of our approach is proven: if the upper bound of the response time exceeds the deadline then the response time exceeds the deadline as well for a CAN network with half the speed.