887 resultados para Polymer Thermogravimetric Analysis


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The thermal degradation of short kevlar fibre-thermoplastic polyurethane (TPU) composites has been studied by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). TGA showed that the thermal degradation of TPU takes place in two steps with peak maxima (T1max and T2ma,) at 383°C and 448°C, respectively. In the presence of 10-40 phr of short kevlar fibres, T1_ and T2max were shifted to lower temperatures. The temperature of onset of degradation was increased from 245 to 255°C at 40 parts per hundred rubber (phr) fibre loading. Kinetic studies showed that the degradation of TPU and kevlar-TPU composite follows first-order reaction kinetics. The DSC study showed that there is an improvement in thermal stability of TPU in the presence of 20 phr of short kevlar fibres.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In situ polymerization of aniline is done inside the pillared clay matrix. The nonswellable pillared clay confined matrix allows efficient polymerization that leads to nanofibrous morphology. As a result high polymer order and crystallinity is attained and is evident from XRD patterns. The strong interaction between the clay layers and polyaniline (PANI) is understood from FTIR and DRS spectra. Additionally these analytical results suggest that the prepared PANI is in the doped state. The PANI/pillared clay nanocomposite formation gives additional thermal stability to the polymer backbone and is clear from the DTG curves.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Low-protein content natural rubber latex was produced by using a nonionic surfactant-polyethylene glycol (PEG). Extractable protein content of natural rubber latex was found to decrease with PEG treatment and reduction increased with increase in the molecular weight of PEG. The low-protein latex samples were characterized by tensile testing, Fourier transform infrared and thermogravimetric analysis. The results have shown 35% reduction in the extractable protein content, without any compromise on the mechanical properties of the latex; however, thermal stability of low-protein latex was found to be reduced marginally with PEG treatment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of the investigation is to develop new high performance adhesive systems based on neoprene-phenolic blends. Initially the effect of addition of all possible ingredients like fillers, adhesion promoters, curing agents and their optimum compositions to neoprene solution is investigated. The phenolic resin used is a copolymer of phenol-cardanolformaldehyde prepared in the laboratory. The optimum ratio between phenol and cardanol that gives the maximum bond strength in metal-metal, rubber-rubber and rubber-metal specimens has been identified. Further the ratio between total phenols and formaldehyde is also optimised. The above adhesive system is further modified by the addition of epoxidized phenolic novolacs. For this purpose, phenolic novolac resins are prepared in different stoichiometric ratios and are subsequently epoxidized. The effectiveness of the adhesive for bonding different metal and rubber substrates is another part of the study. To study the ageing behaviour, different bonded specimens are exposed to high temperature, hot water and salt water and adhesive properties have been evaluated. The synthesized resins have been characterized by FTIR , HNMR spectroscopy. The molecular weights of the resins have been obtained by GPC. Thermogravimetric analysis and differential scanning calorimetry are used to study the thermal properties. The fractured surface analysis is studied by scanning electron microscopy. The study has brought to light the influence of phenol/ formaldehyde stoichiometric ratio, addition of cardanol (a renewable resource), adhesion promoters and suitability of the adhesive for different substrates and the age resistance of adhesive joints among other things.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The search for new materials especially those possessing special properties continues at a great pace because of ever growing demands of the modern life. The focus on the use of intrinsically conductive polymers in organic electronic devices has led to the development of a totally new class of smart materials. Polypyrrole (PPy) is one of the most stable known conducting polymers and also one of the easiest to synthesize. In addition, its high conductivity, good redox reversibility and excellent microwave absorbing characteristics have led to the existence of wide and diversified applications for PPy. However, as any conjugated conducting polymer, PPy lacks processability, flexibility and strength which are essential for industrial requirements. Among various approaches to making tractable materials based on PPy, incorporating PPy within an electrically insulating polymer appears to be a promising method, and this has triggered the development of blends or composites. Conductive elastomeric composites of polypyrrole are important in that they are composite materials suitable for devices where flexibility is an important parameter. Moreover these composites can be moulded into complex shapes. In this work an attempt has been made to prepare conducting elastomeric composites by the incorporation of PPy and PPy coated short Nylon-6 fiber with insulating elastomer matrices- natural rubber and acrylonitrile butadiene rubber. It is well established that mechanical properties of rubber composites can be greatly improved by adding short fibers. Generally short fiber reinforced rubber composites are popular in industrial fields because of their processing advantages, low cost, and their greatly improved technical properties such as strength, stiffness, modulus and damping. In the present work, PPy coated fiber is expected to improve the mechanical properties of the elastomer-PPy composites, at the same time increasing the conductivity. In addition to determination of DC conductivity and evaluation of mechanical properties, the work aims to study the thermal stability, dielectric properties and electromagnetic interference shielding effectiveness of the composites. The thesis consists of ten chapters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hybrid polymer networks (HPNs) based on unsaturated polyester resin (UPR) and epoxy resins were synthesized by reactive blending. The epoxy resins used were epoxidised phenolic novolac (EPN), epoxidised cresol novolac (ECN) and diglycidyl ether of bisphenol A (DGEBA). Epoxy novolacs were prepared by glycidylation of the novolacs using epichlorohydrin. The physical, mechanical, and thermal properties of the cured blends were compared with those of the control resin. Epoxy resins show good miscibility and compatibility with the UPR resin on blending and the co-cured resin showed substantial improvement in the toughness and impact resistance. Considerable enhancement of tensile strength and toughness are noticed at very low loading of EPN. Thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and diVerential scanning calorimetry (DSC) were employed to study the thermal properties of the toughened resin. The EPN/ UPR blends showed substantial improvement in thermal stability as evident from TGA and damping data. The fracture behaviour was corroborated by scanning electron microscopy (SEM). The performance of EPN is found to be superior to other epoxy resins

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Graphene has captured the attention of scientific community due to recently emerging high performance applications. Hence, studying its reinforcing effects on epoxy resin is a significant step. In this study, microwave exfoliated reduced graphene oxide (MERGO) was prepared from natural graphite for subsequent fabrication of epoxy nanocomposites using triethylenetetramine (TETA) as a curing agent via insitu polymerization. Thermogravimetric analysis (TGA), X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), C13 NMR spectroscopy, X-ray photoelectron spectroscopy (XPS) and ultravioletevisible (UVevis) spectroscopy were employed to confirm the simultaneous reduction and exfoliation of graphene oxide. The reinforcing effect of MERGO on epoxy resin was explored by investigating its static mechanical properties and dynamic mechanical analysis (DMA) at MERGO loadings of 0 to 0.5 phr. The micro-structure of epoxy/MERGO nanocomposites was investigated using scanning electron microscope (SEM), transmission electron microscope (TEM) and XRD techniques. The present work reports an enhancement of 32%, 103% and 85% in tensile, impact and flexural strength respectively of epoxy by the addition of even 0.25 phr MERGO. At this loading elastic and flexural moduli also increased by 10% and 65%, respectively. Single-edge-notch three-point-Bending (SEN-TPB) fracture toughness (KIC) measurements were carried out where a 63% increase was observed by the introduction of 0.25 phr MERGO. The interfacial interactions brought about by graphene also benefited the dynamic mechanical properties to a large extent in the form of a significant enhancement in storage modulus and slightly improved glass transition temperature. Considerable improvements were also detected in dielectric properties. The epoxy nanocomposite also attained an ac conductivity of 10 5 S/m and a remarkable increase in dielectric constant. The simple and cost effective way of graphene synthesis for the fabrication of epoxy/MERGO nanocomposites may be extended to the preparation of other MERGO based polymer nanocomposites. This remarkable class of materials has thrown open enormous opportunities for developing conductive adhesives and in microelectronics

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Three new polymeric complexes [Cd(hmt)(SCN)(2)(H2O)(2)](n) (1), [Cd-3(mu(2)-hmt)(2)(SCN)(6)(H2O)(2)](n) (2), and [Cd-2(hmt)(2)(tP)(2)(H2O)(6)](n) (3) [hmt = hexamethylenetetramine, tp = terephthalate] have been synthesized and characterized by single crystal X-ray diffraction. Both the compounds 1 and 2 are 1-D polymers where Cd units are linked by double end-to-end thiocyanate bridges but in 2 the chain is wider containing three cadmium atoms instead of one as found in 1. In both compounds the coordination environment around cadmium atom is distorted octahedral. Compound 3 is a three-dimensional polymer having water-filled microporous channels. Both tp and brut are mu(2)-bridged. One of the acid groups of tp is coordinated in chelating bidentate and the other in monodentate fashion. Half of its Cd atoms are hexa-coordinated and the rest are hepta-coordinated. Thermogravimetric analysis and X-ray diffraction study of 3 show that its framework remains intact upon removal of water molecules. The flexibility of coordination number around cadmium atoms (six or seven) probably plays an important role in establishing the rigidity of the framework. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Red, blue and green emitting rare earth compounds (RE(3+) = Eu(3+), Gd(3+) and Tb(3+)) containing the benzenetricarboxylate ligands (BTC) [hemimellitic (EMA), trimellitic (TLA) and trimesic (TMA)] were synthesized and characterized by elemental analysis, complexometric titration, X-ray diffraction patterns, thermogravimetric analysis and infrared spectroscopy. The complexes presented the following formula: [RE(EMA)(H(2)O)(2)], [RE(TLA)(H(2)O)(4)] and [RE(TMA)(H(2)O)(G)], except for Tb-TMA compound, which was obtained only as anhydrous. Phosphorescence data of Gd(3+)-(BTC) complexes showed that the triplet states (T) of the BTC(3-) anions have energy higher than the main emitting states of the Eu(3+) ((5)D(0)) and Tb(3+) ((5)D(4)), indicating that BTC ligands can act as intramolecular energy donors for these metal ions. The high values of experimental intensity parameters (Omega(2)) of Eu(3+)-(BTC) complexes indicate that the europium ion is in a highly polarizable chemical environment. Based on the luminescence spectra, the energy transfer from the T state of BTC ligands to the excited (5)D(0) and (5)D(4) levels of the Eu(3+) and Tb(3+) ions is discussed. The emission quantum efficiencies (eta) of the (5)D(0) emitting level of the Eu(3+) ion have been also determined. In the case of the Tb(3+) ion, the photoluminescence data show the high emission intensity of the characteristic transitions (5)D(4) -> (7)F(J) (J=0-6), indicating that the BTC ligands are good sensitizers. The RE(3+)-(BTC) complexes act as efficient light conversion molecular devices (LCMDs) and can be used as tricolor luminescent materials. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The in-depth oxypropylation of different types of cellulose fibers, namely Avicel, Rayon, Kraft, and Filter Paper, was investigated. New biphasic mono-component materials were obtained, which could be hot-pressed to form films of cellulose fibers dispersed into a thermoplastic matrix. The success of this chemical modification was assessed by FTIR spectroscopy, X-ray diffraction, scanning electron microscopy. differential scanning calorimetry, thermogravimetric analysis and contact angle measurements. The optimization of this process led to the establishment of the optimal molar ratio between the cellulose CH groups and propylene oxide, which varied as a function of the specific morphology of the fibers. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work describes the partial oxypropylation of filter paper cellulose fibers, employing two different basic catalyst, viz., potassium hydroxide and 1,4-diazabicyclo [2.2.2] octane, to activate the hydroxyl groups of the polysaccharide and thus provide the anionic initiation sites for the ""grafting-from"" polymerization of propylene oxide. The success of this chemical modification was assessed by FTIR spectroscopy, X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis and contact angle measurements. The study of the role of the catalyst employed on the extent of the modification and on the mechanical properties of the ensuing composites, after hot pressing, showed that both the Bronsted and the Lewis base gave satisfactory results, without any marked difference.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cellulose cassava bagasse nanofibrils (CBN) were directly extracted from a by-product of the cassava starch (CS) industry, viz. the cassava bagasse (CB), The morphological structure of the ensuing nanoparticles was investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), presence of other components such as sugars by high performance liquid chromatography (HPLC), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) experiments. The resulting nanofibrils display a relatively low crystallinity and were found to be around 2-11 nm thick and 360-1700 nm long. These nanofibrils were used as reinforcing nanoparticles in a thermoplastic cassava starch matrix plasticized using either glycerol or a mixture of glycerol/sorbitol (1:1) as plasticizer. Nanocomposite films were prepared by a melting process. The reinforcing effect of the filler evaluated by dynamical mechanical tests (DMA) and tensile tests was found to depend on the nature of the plasticizer employed. Thus, for the glycerol-plasticized matrix-based composites, it was limited especially due to additional plasticization by sugars originating from starch hydrolysis during the acid extraction. This effect was evidenced by the reduction of glass vitreous temperature of starch after the incorporation of nanofibrils in TPSG and by the increase of elongation at break in tensile test. On the other hand, for glycerol/sorbitol plasticized nanocomposites the transcrystallization of amylopectin in nanofibrils surface hindered good performances of CBN as reinforcing agent for thermoplastic cassava starch. The incorporation of cassava bagasse cellulose nanofibrils in the thermoplastic starch matrices has resulted in a decrease of its hydrophilic character especially for glycerol plasticized sample. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fourier Transformed Infrared Spectroscopy, Thermogravimetric Analysis, and X-ray Diffractometry have been used to investigate the rigid, semi rigid, and soft polyurethane (PU) forms, which were developed by the Group of Analytic Chemistry and Technology of Polymers - USF - Sao Carlos. The -NCO/-OH ratios were 0.6, 0.5, and 0.3% for rigid, semi rigid, and soft PUs, respectively, showing that different ratios cause differences in thermal behaviors and crystalline structures of the synthesized PU resins. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 115: 263-268, 2010

Relevância:

90.00% 90.00%

Publicador:

Resumo:

By reaction of Zn(CH3COO)2 with p,p′-diphenylmethylenediphosphinic acid in water a new inorganic–organic polymeric hybrid of formula [Zn(CH2(P(Ph)O2)2)] has been synthesized and completely characterized. The X-ray analysis established that the structure consists of 2D-layered polymeric array, the 2D-sheets being built up through strong covalent linkages between the zinc metal and the oxygen donors of the phenylphosphinate ligand. The 2D-layers, which are featuring a mesh-net fashion, present voids of various dimensionality, up to 24-membered rings. The organic parts of the hybrid ligand, namely the phenyl rings, are shielding the inorganic skeleton of the layers, preventing the propagation of the polymer in the third dimension. No water molecules are present in the lattice, both of coordination and crystallization. Crystal data are: monoclinic, P21Ic, a=11.840(2), b=9.646(9), c=12.516(5) Å, β=95.03(2), V=1423.9(15) Å3, Z=4. The solid material has been characterized by 31P MAS NMR spectroscopy and thermogravimetric analysis.


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thermal resistance is one of the most dominative properties for polymer materials. Thermal degradation mechanisms of epoxidized natural rubber (ENR) and NR are studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results show that, the introduction of epoxy groups into the NR molecular main chain leads to a remarkable change in the degradation mechanism. The thermal stability of ENR is worse than that of NR. For the first thermooxidative degradation stage, the thermal decomposition mechanism of ENR is similar to that of NR, which corresponds to a mechanism involving one-dimensional diffusion. For the second stage, the thermal decomposition mechanism of ENR is a three-dimensional diffusion, which is more complex than that of NR. Kinetic analysis showed that activation energy (E?), activation entropy (?H) and activation Gibbs energy (?G) values are all positive, indicating that the thermooxidative degradation process of ENR is non-spontaneous.