974 resultados para Polycyclic aromatic hydrocarbons--Spectra.
Resumo:
Do polyacenes, circumacenes, periacenes, nanographenes, and graphene nanoribbons show a spin polarized ground state? In this work, we present monodeterminantal (Hartree–Fock (HF) and density functional theory (DFT) types), and multideterminantal calculations (Møller–Plesset and Coupled Cluster), for several families of unsaturated organic molecules (n-Acenes, n-Periacenes and n-Circumacenes). All HF calculations and many DFT show a spin-polarized (antiferromagnetic) ground state, in agreement with previous calculations. Nevertheless, the multideterminantal calculations, carried out with perturbative and variational wavefunctions, show that the more stable state is obtained starting from the unpolarized HF wavefunction. The trend of the stabilization of wavefunctions (polarized or unpolarized) with respect to exchange and correlation potentials, and to the number of benzene rings, has been analyzed. A study of the spin (〈Ŝ2〉) and the spin density on the carbon atoms has also been carried out.
Resumo:
Resumen de la comunicación presentada en PIC2015 – the 14th International Congress on Combustion By-Products and Their Health Effects, Umeå, Sweden, 14-17 June 2015.
Resumo:
Resumen del póster presentado en Symposium on Renewable Energy and Products from Biomass and Waste, CIUDEN (Cubillos de Sil, León, Spain), 12-13 May 2015
Resumo:
Risk assessment for public health related to exposure to Halogenated Polycyclic Aromatic Hydrocarbons present in ludic waters
Resumo:
A probabilistic function (integrated source contribution function, ISCF) based on backward air mass trajectory calculation was developed to track sources and atmospheric pathways of polycyclic aromatic hydrocarbons (PAHs) to the Canadian High Arctic station of Alert. In addition to the movement of air masses, the emission intensities at the sources and the major processes of partition, indirect photolysis, and deposition occurring on the way to the Arctic were incorporated into the ISCF. The predicted temporal trend of PAHs at Alert was validated by measured PAH concentrations throughout 2004. The PAH levels in the summer are orders of magnitude lower than those in the winter and spring when long-range atmospheric transport events occur more frequently. PAHs observed at Alert are mostly from East Asia (including Russia Far East), North Europe (including European Russia), and North America. These sources account for 25, 45, and 27% of PAHs atmospheric level at Alert, respectively. Source regions and transport pathways contributing to the PAHs contamination in the Canadian High Arctic vary seasonally. In the winter, Russia and Europe are the major sources. PAHs from these sources travel eastward and turn to the north at approximately 120°E before reaching Alert, in conjunction with the well- known Arctic haze events. In the spring, PAHs from Russia and Europe first migrate to the west and then turn to the north at 60°W toward Alert. The majority of PAHs in the summer are from northern Canada where they are carried to Alert via low- level transport pathways. In the fall, 70% of PAHs arriving at Alert are delivered from North American sources.
Resumo:
Mode of access: Internet.
Resumo:
On the basis of HF/6-31G(d) optimized structures, the nonplanar distortions of 135 polycyclic aromatic hydrocarbons (PAHs) have been classified as splitting (S-) and arching (A-) distortions. Three bay structures are proposed as the structural origin of S-distortion. Due to the limitation of sample molecules, a set of universal motifs for molecules containing A-distortions is not available; however, a set of motifs and parameters are developed for the semiquantitative estimation of the nonplanar strain energies of PAHs containing the corannulene structure, and the differences between the E, values from quantum calculations and those from these estimations vary from -5.60 to 5.51 kcal/mol. The above results are fundamentally important for the understanding of nonplanar distortion of PAHs and fullerenes, and this method can also be employed to semiquantitatively estimate strain energies of such molecules containing hundreds of carbon atoms.
Resumo:
The aim of this study was to evaluate the feasibility of using semipermeable membrane devices (SPMDs) and polyethylene-based passive sampler devices (PSDs) for monitoring PAHs in stormwater. Firstly, SPMDs were deployed at one site and SPMD-derived water concentrations were compared with water concentration measured from grab samples. In a subsequent deployment the performance of SPMDs and PSDs was compared. Finally PSDs of multiple surface area to volume ratios were used to compare PAH concentrations at the two sites. The results obtained in this study show that SPMDs can be used to measure the water concentration of PAHs with reasonable accuracy, when compared with grab samples collected at the same site. Importantly, several PAHs which could not be detected in a 10 L grab sample could be detected in the SPMDs. PSD and SPMD samplers produced similar results when deployed at the same site, with most estimated water concentrations within a factor of 1.5. The use of PSDs in multiple surface area to volume ratios proved to be an effective means of characterizing the uptake kinetics for PAHs in situ. Overall passive water samplers proved to be an efficient technique for monitoring PAHs in stormwater.