865 resultados para Politicy and rule


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the application of Networks of Evolutionary Processors to Decision Support Systems, precisely Knowledge-Driven DSS. Symbolic information and rule-based behavior in Networks of Evolutionary Processors turn out to be a great tool to obtain decisions based on objects present in the network. The non-deterministic and massive parallel way of operation results in NP-problem solving in linear time. A working NEP example is shown.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microposts are small fragments of social media content that have been published using a lightweight paradigm (e.g. Tweets, Facebook likes, foursquare check-ins). Microposts have been used for a variety of applications (e.g., sentiment analysis, opinion mining, trend analysis), by gleaning useful information, often using third-party concept extraction tools. There has been very large uptake of such tools in the last few years, along with the creation and adoption of new methods for concept extraction. However, the evaluation of such efforts has been largely consigned to document corpora (e.g. news articles), questioning the suitability of concept extraction tools and methods for Micropost data. This report describes the Making Sense of Microposts Workshop (#MSM2013) Concept Extraction Challenge, hosted in conjunction with the 2013 World Wide Web conference (WWW'13). The Challenge dataset comprised a manually annotated training corpus of Microposts and an unlabelled test corpus. Participants were set the task of engineering a concept extraction system for a defined set of concepts. Out of a total of 22 complete submissions 13 were accepted for presentation at the workshop; the submissions covered methods ranging from sequence mining algorithms for attribute extraction to part-of-speech tagging for Micropost cleaning and rule-based and discriminative models for token classification. In this report we describe the evaluation process and explain the performance of different approaches in different contexts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis aims to analyze the cross exhibition in sessions halls and audiences of the judiciary, considered the religious freedom and the limitations arising from the idea of State neutrality. It is known that the 1988 Constitution protects freedom of expression of thought, conscience and religion, in its various aspects, proclaiming, on the other hand, the neutrality of the state, to reinforce these same freedoms. Thus, the aim is to avoid confusion between state and religion, admitted, however, collaboration of public interest, in respect of attitude to the beliefs and individual choices of citizens. In modern societies, the dualism between the civil power and religion has to do with laicity and a broader phenomenon that took the name of secularism, meaning the loss of space of religion in societies or even decreased idea religious belonging. It is based on this finding that the work develops with reference to concepts such as civil society and rule of law relevant to an accurate understanding of the problem. The methodology consists of bibliographic and documentary research through books and thesis, in addition to the legislation and some precedents related to the topic in question, looking to investigate whether, even though the predominantly Catholic Brazilian people and recognized the strong influence that Christian values exercise on the public authorities, it is possible to sustain the symbolic differentiation state, a republic that is said secular and democratic and which has as one of the fundamental objectives to promote the good of all, without any form of discrimination. Starting from the idea that the presence in buildings and public institutions, symbols and Catholic imagery, like the crucifix, has some difficulty in reconciling the guarantee of religious freedom and the principle of laicity, the idea is to exactly propose a solution who can respect pluralism and diversity in a context where Catholicism remains a strong presence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article we argue that young people’s political participation in the social media can be considered ‘public pedagogy’. The argument builds on a previous empirical analysis of a Swedish net community called Black Heart. Theoretically, the article is based on a particular notion of public pedagogy, education and Hannah Arendt’s expressive agonism. The political participation that takes place in the net community builds up an educational situation that involves central characteristics: communication, community building, a strong content focus and content production, argumentation and rule following. These characteristics pave the way for young people’s public voicing, experiencing, preferences and political interests that guide their everyday political life and learning – a phenomenon that we understand as a form of public pedagogy. 

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Bayesian optimisation algorithm for a nurse scheduling problem is presented, which involves choosing a suitable scheduling rule from a set for each nurse's assignment. When a human scheduler works, he normally builds a schedule systematically following a set of rules. After much practice, the scheduler gradually masters the knowledge of which solution parts go well with others. He can identify good parts and is aware of the solution quality even if the scheduling process is not yet completed, thus having the ability to finish a schedule by using flexible, rather than fixed, rules. In this paper, we design a more human-like scheduling algorithm, by using a Bayesian optimisation algorithm to implement explicit learning from past solutions. A nurse scheduling problem from a UK hospital is used for testing. Unlike our previous work that used Genetic Algorithms to implement implicit learning [1], the learning in the proposed algorithm is explicit, i.e. we identify and mix building blocks directly. The Bayesian optimisation algorithm is applied to implement such explicit learning by building a Bayesian network of the joint distribution of solutions. The conditional probability of each variable in the network is computed according to an initial set of promising solutions. Subsequently, each new instance for each variable is generated by using the corresponding conditional probabilities, until all variables have been generated, i.e. in our case, new rule strings have been obtained. Sets of rule strings are generated in this way, some of which will replace previous strings based on fitness. If stopping conditions are not met, the conditional probabilities for all nodes in the Bayesian network are updated again using the current set of promising rule strings. For clarity, consider the following toy example of scheduling five nurses with two rules (1: random allocation, 2: allocate nurse to low-cost shifts). In the beginning of the search, the probabilities of choosing rule 1 or 2 for each nurse is equal, i.e. 50%. After a few iterations, due to the selection pressure and reinforcement learning, we experience two solution pathways: Because pure low-cost or random allocation produces low quality solutions, either rule 1 is used for the first 2-3 nurses and rule 2 on remainder or vice versa. In essence, Bayesian network learns 'use rule 2 after 2-3x using rule 1' or vice versa. It should be noted that for our and most other scheduling problems, the structure of the network model is known and all variables are fully observed. In this case, the goal of learning is to find the rule values that maximize the likelihood of the training data. Thus, learning can amount to 'counting' in the case of multinomial distributions. For our problem, we use our rules: Random, Cheapest Cost, Best Cover and Balance of Cost and Cover. In more detail, the steps of our Bayesian optimisation algorithm for nurse scheduling are: 1. Set t = 0, and generate an initial population P(0) at random; 2. Use roulette-wheel selection to choose a set of promising rule strings S(t) from P(t); 3. Compute conditional probabilities of each node according to this set of promising solutions; 4. Assign each nurse using roulette-wheel selection based on the rules' conditional probabilities. A set of new rule strings O(t) will be generated in this way; 5. Create a new population P(t+1) by replacing some rule strings from P(t) with O(t), and set t = t+1; 6. If the termination conditions are not met (we use 2000 generations), go to step 2. Computational results from 52 real data instances demonstrate the success of this approach. They also suggest that the learning mechanism in the proposed approach might be suitable for other scheduling problems. Another direction for further research is to see if there is a good constructing sequence for individual data instances, given a fixed nurse scheduling order. If so, the good patterns could be recognized and then extracted as new domain knowledge. Thus, by using this extracted knowledge, we can assign specific rules to the corresponding nurses beforehand, and only schedule the remaining nurses with all available rules, making it possible to reduce the solution space. Acknowledgements The work was funded by the UK Government's major funding agency, Engineering and Physical Sciences Research Council (EPSRC), under grand GR/R92899/01. References [1] Aickelin U, "An Indirect Genetic Algorithm for Set Covering Problems", Journal of the Operational Research Society, 53(10): 1118-1126,

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Bayesian optimisation algorithm for a nurse scheduling problem is presented, which involves choosing a suitable scheduling rule from a set for each nurse's assignment. When a human scheduler works, he normally builds a schedule systematically following a set of rules. After much practice, the scheduler gradually masters the knowledge of which solution parts go well with others. He can identify good parts and is aware of the solution quality even if the scheduling process is not yet completed, thus having the ability to finish a schedule by using flexible, rather than fixed, rules. In this paper, we design a more human-like scheduling algorithm, by using a Bayesian optimisation algorithm to implement explicit learning from past solutions. A nurse scheduling problem from a UK hospital is used for testing. Unlike our previous work that used Genetic Algorithms to implement implicit learning [1], the learning in the proposed algorithm is explicit, i.e. we identify and mix building blocks directly. The Bayesian optimisation algorithm is applied to implement such explicit learning by building a Bayesian network of the joint distribution of solutions. The conditional probability of each variable in the network is computed according to an initial set of promising solutions. Subsequently, each new instance for each variable is generated by using the corresponding conditional probabilities, until all variables have been generated, i.e. in our case, new rule strings have been obtained. Sets of rule strings are generated in this way, some of which will replace previous strings based on fitness. If stopping conditions are not met, the conditional probabilities for all nodes in the Bayesian network are updated again using the current set of promising rule strings. For clarity, consider the following toy example of scheduling five nurses with two rules (1: random allocation, 2: allocate nurse to low-cost shifts). In the beginning of the search, the probabilities of choosing rule 1 or 2 for each nurse is equal, i.e. 50%. After a few iterations, due to the selection pressure and reinforcement learning, we experience two solution pathways: Because pure low-cost or random allocation produces low quality solutions, either rule 1 is used for the first 2-3 nurses and rule 2 on remainder or vice versa. In essence, Bayesian network learns 'use rule 2 after 2-3x using rule 1' or vice versa. It should be noted that for our and most other scheduling problems, the structure of the network model is known and all variables are fully observed. In this case, the goal of learning is to find the rule values that maximize the likelihood of the training data. Thus, learning can amount to 'counting' in the case of multinomial distributions. For our problem, we use our rules: Random, Cheapest Cost, Best Cover and Balance of Cost and Cover. In more detail, the steps of our Bayesian optimisation algorithm for nurse scheduling are: 1. Set t = 0, and generate an initial population P(0) at random; 2. Use roulette-wheel selection to choose a set of promising rule strings S(t) from P(t); 3. Compute conditional probabilities of each node according to this set of promising solutions; 4. Assign each nurse using roulette-wheel selection based on the rules' conditional probabilities. A set of new rule strings O(t) will be generated in this way; 5. Create a new population P(t+1) by replacing some rule strings from P(t) with O(t), and set t = t+1; 6. If the termination conditions are not met (we use 2000 generations), go to step 2. Computational results from 52 real data instances demonstrate the success of this approach. They also suggest that the learning mechanism in the proposed approach might be suitable for other scheduling problems. Another direction for further research is to see if there is a good constructing sequence for individual data instances, given a fixed nurse scheduling order. If so, the good patterns could be recognized and then extracted as new domain knowledge. Thus, by using this extracted knowledge, we can assign specific rules to the corresponding nurses beforehand, and only schedule the remaining nurses with all available rules, making it possible to reduce the solution space. Acknowledgements The work was funded by the UK Government's major funding agency, Engineering and Physical Sciences Research Council (EPSRC), under grand GR/R92899/01. References [1] Aickelin U, "An Indirect Genetic Algorithm for Set Covering Problems", Journal of the Operational Research Society, 53(10): 1118-1126,

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Computational intelligent support for decision making is becoming increasingly popular and essential among medical professionals. Also, with the modern medical devices being capable to communicate with ICT, created models can easily find practical translation into software. Machine learning solutions for medicine range from the robust but opaque paradigms of support vector machines and neural networks to the also performant, yet more comprehensible, decision trees and rule-based models. So how can such different techniques be combined such that the professional obtains the whole spectrum of their particular advantages? The presented approaches have been conceived for various medical problems, while permanently bearing in mind the balance between good accuracy and understandable interpretation of the decision in order to truly establish a trustworthy ‘artificial’ second opinion for the medical expert.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de Mestrado, Ciências da Linguagem, Faculdade de Ciências Humanas e Sociais, Universidade do Algarve, 2014

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper takes stock of the forces that lie behind the recent rise of preferential agreements in services trade. Its focuses first on a number of distinguishing features of services trade that sets it apart from trade in goods and shapes trade liberalization and rule-making approaches in the services field. The paper then documents the nature, modal and sectoral incidence of the trade and investment preferences spawned by preferential trade agreements (PTAs) in services. It does so with a view to addressing the question: how “preferential” is the preferential treatment of services trade? Finally, the paper addresses a number of considerations arising from attempts to multilateralize preferential access and rule-making in services trade.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The South Carolina Department of Insurance issues periodic bulletins explaining different aspects and rule interpretations of state insurance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The South Carolina Department of Insurance issues periodic bulletins explaining different aspects and rule interpretations of state insurance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The South Carolina Department of Insurance issues periodic bulletins explaining different aspects and rule interpretations of state insurance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The South Carolina Department of Insurance issues periodic bulletins explaining different aspects and rule interpretations of state insurance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The South Carolina Department of Insurance issues periodic bulletins explaining different aspects and rule interpretations of state insurance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The South Carolina Department of Insurance issues periodic bulletins explaining different aspects and rule interpretations of state insurance.