913 resultados para Poisson regression model
Resumo:
Trabecular bone score (TBS) is a grey-level textural index of bone microarchitecture derived from lumbar spine dual-energy X-ray absorptiometry (DXA) images. TBS is a BMD-independent predictor of fracture risk. The objective of this meta-analysis was to determine whether TBS predicted fracture risk independently of FRAX probability and to examine their combined performance by adjusting the FRAX probability for TBS. We utilized individual level data from 17,809 men and women in 14 prospective population-based cohorts. Baseline evaluation included TBS and the FRAX risk variables and outcomes during follow up (mean 6.7 years) comprised major osteoporotic fractures. The association between TBS, FRAX probabilities and the risk of fracture was examined using an extension of the Poisson regression model in each cohort and for each sex and expressed as the gradient of risk (GR; hazard ratio per 1SD change in risk variable in direction of increased risk). FRAX probabilities were adjusted for TBS using an adjustment factor derived from an independent cohort (the Manitoba Bone Density Cohort). Overall, the GR of TBS for major osteoporotic fracture was 1.44 (95% CI: 1.35-1.53) when adjusted for age and time since baseline and was similar in men and women (p > 0.10). When additionally adjusted for FRAX 10-year probability of major osteoporotic fracture, TBS remained a significant, independent predictor for fracture (GR 1.32, 95%CI: 1.24-1.41). The adjustment of FRAX probability for TBS resulted in a small increase in the GR (1.76, 95%CI: 1.65, 1.87 vs. 1.70, 95%CI: 1.60-1.81). A smaller change in GR for hip fracture was observed (FRAX hip fracture probability GR 2.25 vs. 2.22). TBS is a significant predictor of fracture risk independently of FRAX. The findings support the use of TBS as a potential adjustment for FRAX probability, though the impact of the adjustment remains to be determined in the context of clinical assessment guidelines. This article is protected by copyright. All rights reserved.
Resumo:
Invasive pneumococcal disease (IPD) causes significant health burden in the US, is responsible for the majority of bacterial meningitis, and causes more deaths than any other vaccine preventable bacterial disease in the US. The estimated National IPD rate is 14.3 cases per 100,000 population with a case-fatality rate of 1.5 cases per 100,000 population. Although cases of IPD are routinely reported to the local health department in Harris County Texas, the incidence (IR) and case-fatality (CFR) rates have not been reported. Additionally, it is important to know which serotypes of S. pneumoniae are circulating in Harris County Texas and to determine if ‘replacement disease’ is occurring. ^ This study reported incidence and case-fatality rates from 2003 to 2009, and described the trends in IPD, including the IPD serotypes circulating in Harris County Texas during the study period, particularly in 2008 and 2010. Annual incidence rates were calculated and reported for 2003 to 2009, using complete surveillance-year data. ^ Geographic information system (GIS) software was used to create a series of maps of the data reported during the study period. Cluster and outlier analysis and hot spot analysis were conducted using both case counts by census tract and disease rate by census tract. ^ IPD age- and race-adjusted IR for Harris County Texas and their 95% confidence intervals (CIs) were 1.40 (95% CI 1.0, 1.8), 1.71 (95% CI 1.24, 2.17), 3.13 (95% CI 2.48, 3.78), 3.08 (95% CI 2.43, 3.74), 5.61 (95% CI 4.79, 6.43), 8.11 (95% CI 7.11, 9.1), and 7.65 (95% CI 6.69, 8.61) for the years 2003 to 2009, respectively (rates were age- and race-adjusted to each year's midyear US population estimates). A Poisson regression model demonstrated a statistically significant increasing trend of about 32 percent per year in the IPD rates over the course of the study period. IPD age- and race-adjusted case-fatality rates (CFR) for Harris County Texas were also calculated and reported. A Poisson regression model demonstrated a statistically significant increasing trend of about 26 percent per year in the IPD case-fatality rates from 2003 through 2009. A logistic regression model associated the risk of dying from IPD to alcohol abuse (OR 4.69, 95% CI 2.57, 8.56) and to meningitis (OR 2.42, 95% CI 1.46, 4.03). ^ The prevalence of non-vaccine serotypes (NVT) among IPD cases with serotyped isolates was 98.2 percent. In 2008, the year with the sample more geographically representative of all areas of Harris County Texas, the prevalence was 96 percent. Given these findings, it is reasonable to conclude that ‘replacement disease’ is occurring in Harris County Texas, meaning that, the majority of IPD is caused by serotypes not included in the PCV7 vaccine. Also in conclusion, IPD rates increased during the study period in Harris County Texas.^
Resumo:
Introdução: Pacientes com mielomeningocele apresentam elevada mortalidade e desenvolvem déficits neurológicos que ocorrem, primariamente, pelo desenvolvimento anormal da medula e de raízes nervosas e, secundariamente, por complicações adquiridas no período pós-natal. O desafio no cuidado desses pacientes é o reconhecimento precoce dos recém-nascidos de risco para evolução desfavorável a fim de estabelecer estratégias terapêuticas individualizadas. Objetivo: Este estudo tem como objetivo identificar marcadores prognósticos de curto prazo para recém-nascidos com mielomeningocele. As características anatômicas do defeito medular e da sua correção neurocirúrgica foram analisadas para esta finalidade. Métodos: Foi realizado um estudo de coorte retrospectiva com 70 pacientes com mielomeningocele em topografia torácica, lombar ou sacral nascidos entre janeiro de 2007 a dezembro de 2013 no Centro Neonatal do Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo. Pacientes com infecção congênita, anomalias cromossômicas e outras malformações maiores não relacionadas à mielomeningocele foram excluídos da análise. As características anatômicas da mielomeningocele e a sua correção neurocirúrgica foram analisadas quanto aos seguintes desfechos: reanimação neonatal, tempo de internação, necessidade de derivação ventricular, deiscência da ferida operatória, infecção da ferida operatória, infecção do sistema nervoso central e sepse. Para a análise bivariada dos desfechos qualitativos com os fatores de interesse foram empregados testes do qui-quadrado e exato de Fisher. Para a análise do desfecho quantitativo, tempo de internação hospitalar, foram empregados testes de Mann-Whitney. Foram estimados os riscos relativos e os respectivos intervalos com 95% de confiança. Foram desenvolvidos modelos de regressão linear múltipla para os desfechos quantitativos e regressão de Poisson para os desfechos qualitativos. Resultados: Durante o período do estudo 12.559 recém-nascidos foram admitidos no Centro Neonatal do Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo. Oitenta pacientes foram diagnosticados com mielomeningocele, com incidência de 6,4 casos para cada 1.000 nascidos vivos. Dez pacientes foram excluídos da análise devido à mielomeningocele em topografia cervical (n = 1), à cardiopatia congênita (n = 4), à trissomia do cromossomo 13 (n = 1), à onfalocele (n = 3) e à encefalocele (n = 1). Ocorreram três óbitos (4,28%). Mielomeningocele extensa foi associada a infecção do sistema nervoso central, a complicação de ferida operatória e a maior tempo de internação hospitalar. Os pacientes com mielomeningocele em topografia torácica apresentaram tempo de internação, em média, 39 dias maior que aqueles com defeito em topografia lombar ou sacral. Houve maior necessidade de reanimação em sala de parto entre os pacientes com macrocrania ao nascer. A correção cirúrgica realizada após 48 horas de vida aumentou em 5,7 vezes o risco de infecção do sistema nervoso central. Entre os pacientes operados nas primeiras 48 horas de vida não foi observado benefício adicional na correção cirúrgica realizada em \"tempo zero\". A ausência de hidrocefalia antenatal foi um marcador de bom prognóstico. Nestes pacientes, a combinação dos desfechos necessidade de derivação ventricular, complicações infecciosas, complicações de ferida operatória e reanimação em sala de parto foi 70% menos frequente. Conclusão: Este estudo permitiu identificar marcadores prognósticos de curto prazo em recém-nascidos com mielomeningocele. Os defeitos medulares extensos e a correção cirúrgica após 48 horas de vida influenciaram negativamente na evolução de curto prazo. As lesões extensas foram associadas a maiores taxas de infecção do sistema nervoso central, a complicações de ferida operatória e a internação hospitalar prolongada. A correção cirúrgica realizada após 48 horas de vida aumentou significativamente a ocorrência de infecção do sistema nervoso central. Ausência de hidrocefalia antenatal foi associada a menor número de complicações nos primeiros dias de vida
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
La presente investigación tiene como objetivo principal determinar la existencia de una relación de causalidad entre Fecundidad y Pobreza en el Ecuador a partir del análisis de datos provinciales para los años 2006 y 2014. Para evaluar la relación de estas variables, se hizo uso de dos modelos econométricos: el Modelo de Regresión Poisson para evaluar el impacto de la Pobreza sobre la Fecundidad; y el Modelo de Regresión Probit para analizar el impacto que tiene la Fecundidad sobre la pobreza. Los modelos mencionados fueron estimados para un total de 13.580 hogares en el año 2006 y 28.399 hogares en el año 2014, datos que fueron obtenidos a partir de la cuarta y quinta versión de la Encuesta de Condiciones de Vida del Ecuador (ECV) realizadas por el INEC. Se encontró una fuerte relación positiva entre las variables mencionadas en ambos años de estudio, sin embargo,debido a la falta de información y a la estructuración de la base de datos empleada no se pudo determinar de forma precisa la existencia de una relación causal entre ambas variables. A pesar de no haberse determinado la dirección de la causalidad es importante mencionar que la influencia que ejerce la Pobreza sobre los niveles de Fecundidad en el Ecuador es mucho mayor a la que se encontró al analizar el impacto que tiene la Fecundidad sobre la Pobreza, es decir, elevados niveles de pobreza causan un mayor número de hijos en los hogares.
Resumo:
INTRODUCTION: Malaria is a serious problem in the Brazilian Amazon region, and the detection of possible risk factors could be of great interest for public health authorities. The objective of this article was to investigate the association between environmental variables and the yearly registers of malaria in the Amazon region using Bayesian spatiotemporal methods. METHODS: We used Poisson spatiotemporal regression models to analyze the Brazilian Amazon forest malaria count for the period from 1999 to 2008. In this study, we included some covariates that could be important in the yearly prediction of malaria, such as deforestation rate. We obtained the inferences using a Bayesian approach and Markov Chain Monte Carlo (MCMC) methods to simulate samples for the joint posterior distribution of interest. The discrimination of different models was also discussed. RESULTS: The model proposed here suggests that deforestation rate, the number of inhabitants per km², and the human development index (HDI) are important in the prediction of malaria cases. CONCLUSIONS: It is possible to conclude that human development, population growth, deforestation, and their associated ecological alterations are conducive to increasing malaria risk. We conclude that the use of Poisson regression models that capture the spatial and temporal effects under the Bayesian paradigm is a good strategy for modeling malaria counts.
Resumo:
INTRODUÇÃO: A malaria é uma doença endêmica na região da Amazônia Brasileira, e a detecção de possíveis fatores de risco pode ser de grande interesse às autoridades em saúde pública. O objetivo deste artigo é investigar a associação entre variáveis ambientais e os registros anuais de malária na região amazônica usando métodos bayesianos espaço-temporais. MÉTODOS: Utilizaram-se modelos de regressão espaço-temporais de Poisson para analisar os dados anuais de contagem de casos de malária entre os anos de 1999 a 2008, considerando a presença de alguns fatores como a taxa de desflorestamento. em uma abordagem bayesiana, as inferências foram obtidas por métodos Monte Carlo em cadeias de Markov (MCMC) que simularam amostras para a distribuição conjunta a posteriori de interesse. A discriminação de diferentes modelos também foi discutida. RESULTADOS: O modelo aqui proposto sugeriu que a taxa de desflorestamento, o número de habitants por km² e o índice de desenvolvimento humano (IDH) são importantes para a predição de casos de malária. CONCLUSÕES: É possível concluir que o desenvolvimento humano, o crescimento populacional, o desflorestamento e as alterações ecológicas associadas a estes fatores estão associados ao aumento do risco de malária. Pode-se ainda concluir que o uso de modelos de regressão de Poisson que capturam o efeito temporal e espacial em um enfoque bayesiano é uma boa estratégia para modelar dados de contagem de malária.
Resumo:
This paper investigates the usefulness of switching Gaussian state space models as a tool for implementing dynamic model selecting (DMS) or averaging (DMA) in time-varying parameter regression models. DMS methods allow for model switching, where a different model can be chosen at each point in time. Thus, they allow for the explanatory variables in the time-varying parameter regression model to change over time. DMA will carry out model averaging in a time-varying manner. We compare our exact approach to DMA/DMS to a popular existing procedure which relies on the use of forgetting factor approximations. In an application, we use DMS to select different predictors in an in ation forecasting application. We also compare different ways of implementing DMA/DMS and investigate whether they lead to similar results.
Resumo:
It has been argued that by truncating the sample space of the negative binomial and of the inverse Gaussian-Poisson mixture models at zero, one is allowed to extend the parameter space of the model. Here that is proved to be the case for the more general three parameter Tweedie-Poisson mixture model. It is also proved that the distributions in the extended part of the parameter space are not the zero truncation of mixed poisson distributions and that, other than for the negative binomial, they are not mixtures of zero truncated Poisson distributions either. By extending the parameter space one can improve the fit when the frequency of one is larger and the right tail is heavier than is allowed by the unextended model. Considering the extended model also allows one to use the basic maximum likelihood based inference tools when parameter estimates fall in the extended part of the parameter space, and hence when the m.l.e. does not exist under the unextended model. This extended truncated Tweedie-Poisson model is proved to be useful in the analysis of words and species frequency count data.
Approximation de la distribution a posteriori d'un modèle Gamma-Poisson hiérarchique à effets mixtes
Resumo:
La méthode que nous présentons pour modéliser des données dites de "comptage" ou données de Poisson est basée sur la procédure nommée Modélisation multi-niveau et interactive de la régression de Poisson (PRIMM) développée par Christiansen et Morris (1997). Dans la méthode PRIMM, la régression de Poisson ne comprend que des effets fixes tandis que notre modèle intègre en plus des effets aléatoires. De même que Christiansen et Morris (1997), le modèle étudié consiste à faire de l'inférence basée sur des approximations analytiques des distributions a posteriori des paramètres, évitant ainsi d'utiliser des méthodes computationnelles comme les méthodes de Monte Carlo par chaînes de Markov (MCMC). Les approximations sont basées sur la méthode de Laplace et la théorie asymptotique liée à l'approximation normale pour les lois a posteriori. L'estimation des paramètres de la régression de Poisson est faite par la maximisation de leur densité a posteriori via l'algorithme de Newton-Raphson. Cette étude détermine également les deux premiers moments a posteriori des paramètres de la loi de Poisson dont la distribution a posteriori de chacun d'eux est approximativement une loi gamma. Des applications sur deux exemples de données ont permis de vérifier que ce modèle peut être considéré dans une certaine mesure comme une généralisation de la méthode PRIMM. En effet, le modèle s'applique aussi bien aux données de Poisson non stratifiées qu'aux données stratifiées; et dans ce dernier cas, il comporte non seulement des effets fixes mais aussi des effets aléatoires liés aux strates. Enfin, le modèle est appliqué aux données relatives à plusieurs types d'effets indésirables observés chez les participants d'un essai clinique impliquant un vaccin quadrivalent contre la rougeole, les oreillons, la rub\'eole et la varicelle. La régression de Poisson comprend l'effet fixe correspondant à la variable traitement/contrôle, ainsi que des effets aléatoires liés aux systèmes biologiques du corps humain auxquels sont attribués les effets indésirables considérés.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The objective of this study was to estimate (co)variance components using random regression on B-spline functions to weight records obtained from birth to adulthood. A total of 82 064 weight records of 8145 females obtained from the data bank of the Nellore Breeding Program (PMGRN/Nellore Brazil) which started in 1987, were used. The models included direct additive and maternal genetic effects and animal and maternal permanent environmental effects as random. Contemporary group and dam age at calving (linear and quadratic effect) were included as fixed effects, and orthogonal Legendre polynomials of age (cubic regression) were considered as random covariate. The random effects were modeled using B-spline functions considering linear, quadratic and cubic polynomials for each individual segment. Residual variances were grouped in five age classes. Direct additive genetic and animal permanent environmental effects were modeled using up to seven knots (six segments). A single segment with two knots at the end points of the curve was used for the estimation of maternal genetic and maternal permanent environmental effects. A total of 15 models were studied, with the number of parameters ranging from 17 to 81. The models that used B-splines were compared with multi-trait analyses with nine weight traits and to a random regression model that used orthogonal Legendre polynomials. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most appropriate and parsimonious model to describe the covariance structure of the data. Selection for higher weight, such as at young ages, should be performed taking into account an increase in mature cow weight. Particularly, this is important in most of Nellore beef cattle production systems, where the cow herd is maintained on range conditions. There is limited modification of the growth curve of Nellore cattle with respect to the aim of selecting them for rapid growth at young ages while maintaining constant adult weight.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this study was to estimate (co)variance components using random regression on B-spline functions to weight records obtained from birth to adulthood. A total of 82 064 weight records of 8145 females obtained from the data bank of the Nellore Breeding Program (PMGRN/Nellore Brazil) which started in 1987, were used. The models included direct additive and maternal genetic effects and animal and maternal permanent environmental effects as random. Contemporary group and dam age at calving (linear and quadratic effect) were included as fixed effects, and orthogonal Legendre polynomials of age (cubic regression) were considered as random covariate. The random effects were modeled using B-spline functions considering linear, quadratic and cubic polynomials for each individual segment. Residual variances were grouped in five age classes. Direct additive genetic and animal permanent environmental effects were modeled using up to seven knots (six segments). A single segment with two knots at the end points of the curve was used for the estimation of maternal genetic and maternal permanent environmental effects. A total of 15 models were studied, with the number of parameters ranging from 17 to 81. The models that used B-splines were compared with multi-trait analyses with nine weight traits and to a random regression model that used orthogonal Legendre polynomials. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most appropriate and parsimonious model to describe the covariance structure of the data. Selection for higher weight, such as at young ages, should be performed taking into account an increase in mature cow weight. Particularly, this is important in most of Nellore beef cattle production systems, where the cow herd is maintained on range conditions. There is limited modification of the growth curve of Nellore cattle with respect to the aim of selecting them for rapid growth at young ages while maintaining constant adult weight.
Resumo:
Generalized linear mixed models (GLMMs) provide an elegant framework for the analysis of correlated data. Due to the non-closed form of the likelihood, GLMMs are often fit by computational procedures like penalized quasi-likelihood (PQL). Special cases of these models are generalized linear models (GLMs), which are often fit using algorithms like iterative weighted least squares (IWLS). High computational costs and memory space constraints often make it difficult to apply these iterative procedures to data sets with very large number of cases. This paper proposes a computationally efficient strategy based on the Gauss-Seidel algorithm that iteratively fits sub-models of the GLMM to subsetted versions of the data. Additional gains in efficiency are achieved for Poisson models, commonly used in disease mapping problems, because of their special collapsibility property which allows data reduction through summaries. Convergence of the proposed iterative procedure is guaranteed for canonical link functions. The strategy is applied to investigate the relationship between ischemic heart disease, socioeconomic status and age/gender category in New South Wales, Australia, based on outcome data consisting of approximately 33 million records. A simulation study demonstrates the algorithm's reliability in analyzing a data set with 12 million records for a (non-collapsible) logistic regression model.