987 resultados para Point-source Pollution
Resumo:
Since the advent of wide-angle imaging of the inner heliosphere, a plethora of techniques have been developed to investigate the three-dimensional structure and kinematics of solar wind transients, such as coronal mass ejections, from their signatures in single- and multi-spacecraft imaging observations. These techniques, which range from the highly complex and computationally intensive to methods based on simple curve fitting, all have their inherent advantages and limitations. In the analysis of single-spacecraft imaging observations, much use has been made of the fixed φ fitting (FPF) and harmonic mean fitting (HMF) techniques, in which the solar wind transient is considered to be a radially propagating point source (fixed φ, FP, model) and a radially expanding circle anchored at Sun centre (harmonic mean, HM, model), respectively. Initially, we compare the radial speeds and propagation directions derived from application of the FPF and HMF techniques to a large set of STEREO/Heliospheric Imager (HI) observations. As the geometries on which these two techniques are founded constitute extreme descriptions of solar wind transients in terms of their extent along the line of sight, we describe a single-spacecraft fitting technique based on a more generalized model for which the FP and HM geometries form the limiting cases. In addition to providing estimates of a transient’s speed and propagation direction, the self-similar expansion fitting (SSEF) technique provides, in theory, the capability to estimate the transient’s angular extent in the plane orthogonal to the field of view. Using the HI observations, and also by performing a Monte Carlo simulation, we assess the potential of the SSEF technique.
Resumo:
Spatial and temporal fluctuations in the concentration field from an ensemble of continuous point-source releases in a regular building array are analyzed from data generated by direct numerical simulations. The release is of a passive scalar under conditions of neutral stability. Results are related to the underlying flow structure by contrasting data for an imposed wind direction of 0 deg and 45 deg relative to the buildings. Furthermore, the effects of distance from the source and vicinity to the plume centreline on the spatial and temporal variability are documented. The general picture that emerges is that this particular geometry splits the flow domain into segments (e.g. “streets” and “intersections”) in each of which the air is, to a first approximation, well mixed. Notable exceptions to this general rule include regions close to the source, near the plume edge, and in unobstructed channels when the flow is aligned. In the oblique (45 deg) case the strongly three-dimensional nature of the flow enhances mixing of a scalar within the canopy leading to reduced temporal and spatial concentration fluctuations within the plume core. These fluctuations are in general larger for the parallel flow (0 deg) case, especially so in the long unobstructed channels. Due to the more complex flow structure in the canyon-type streets behind buildings, fluctuations are lower than in the open channels, though still substantially larger than for oblique flow. These results are relevant to the formulation of simple models for dispersion in urban areas and to the quantification of the uncertainties in their predictions.
Resumo:
A detailed study was performed for a sample of low-mass pre-main-sequence (PMS) stars, previously identified as weak-line T Tauri stars, which are compared to members of the Tucanae and Horologium Associations. Aiming to verify if there is any pattern of abundances when comparing the young stars at different phases, we selected objects in the range from 1 to 100 Myr, which covers most of PMS evolution. High-resolution optical spectra were acquired at European Southern Observatory and Observatorio do Pico dos Dias. The stellar fundamental parameters effective temperature and gravity were calculated by excitation and ionization equilibria of iron absorption lines. Chemical abundances were obtained via equivalent width calculations and spectral synthesis for 44 per cent of the sample, which shows metallicities within 0.5 dex solar. A classification was developed based on equivalent width of Li I 6708 angstrom and Ha lines and spectral types of the studied stars. This classification allowed a separation of the sample into categories that correspond to different evolutive stages in the PMS. The position of these stars in the Hertzsprung-Russell diagram was also inspected in order to estimate their ages and masses. Among the studied objects, it was verified that our sample actually contains seven weak-line T Tauri stars, three are Classical T Tauri, 12 are Fe/Ge PMS stars and 21 are post-T Tauri or young main-sequence stars. An estimation of circumstellar luminosity was obtained using a disc model to reproduce the observed spectral energy distribution. Most of the stars show low levels of circumstellar emission, corresponding to less than 30 per cent of the total emission.
Resumo:
We describe the public ESO near-IR variability survey (VVV) scanning the Milky Way bulge and an adjacent section of the mid-plane where star formation activity is high. The survey will take 1929 h of observations with the 4-m VISTA telescope during 5 years (2010-2014), covering similar to 10(9) point sources across an area of 520 deg(2), including 33 known globular clusters and similar to 350 open clusters. The final product will be a deep near-IR atlas in five passbands (0.9-2.5 mu m) and a catalogue of more than 106 variable point sources. Unlike single-epoch surveys that, in most cases, only produce 2-D maps, the VVV variable star survey will enable the construction of a 3-D map of the surveyed region using well-understood distance indicators such as RR Lyrae stars, and Cepheids. It will yield important information on the ages of the populations. The observations will be combined with data from MACHO, OGLE, EROS, VST, Spitzer, HST, Chandra, INTEGRAL, WISE, Fermi LAT, XMM-Newton, GAIA and ALMA for a complete understanding of the variable sources in the inner Milky Way. This public survey will provide data available to the whole community and therefore will enable further studies of the history of the Milky Way, its globular cluster evolution, and the population census of the Galactic Bulge and center, as well as the investigations of the star forming regions in the disk. The combined variable star catalogues will have important implications for theoretical investigations of pulsation properties of stars. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Bacterial isolates from natural sites with high toxic and heavy metal contamination more frequently contain determinants for resistance to antimicrobials. Natural strains were isolated from the ingesta and external slime of Salmo salar (Linnaeus, 1758) and Salvelinusjontinalis (Mitchell, 1814). Fish specimens were acquired from Casco Bay hatcheries, Casco, ME where there is no history of antibiotic use. Seventy-nine bacterial strains, including many well-documented salmonid commensals (an association from which the fish derives no benefit), were identified using 165 rRNA gene sequencing. Mercury resistant isolates were selected for initially on 25μM HgCI2. Strains were then grown at 20-24°C on Trypticase Soy Agar (TSA) plates containing 0-1000μM HgCl2 or 0-130μM Phenyl Mercuric Acetate (PMA). Mercury in the hatchery feed water due to ubiquitous non-point source deposition has selected for the mercury resistance observed in bacterial strains. Antibiotic resistance determinations, as measured by Minimum Inhibitory Concentration MIC) assays were performed on the 79 bacterial isolates using Sensititrel antimicrobial susceptibility panels. A positive linear correlation between the mercury (pMA and HgCl2) MIC's and antibiotic resistance for all observed strains was demonstrated. Conjugation experiments with Pseudomonas, Aeromonas, and Azomonas donors confirmed phenotypic transfer of penicillin and cephem resistances to Escherichia coli DH5a recipients. Conjugation experiments with Pseudomonas donors showed minimal transfer of tetracycline and minoglycoside resistances to Escherichia coli DH5a recipients. Our study suggests that the accumulation of antimicrobial resistances observed in these natural bacterial populations may be due to the indirect selective pressure exerted by environmental mercury.
Resumo:
In this manuscript, seasonal and spatial trends of water collected from two sampling places in the Preto River in the Turvo-Grande watershed were evaluated. Water samples were collected during June/07 to July/08 and parameters sulphate, total organic carbon, ammonia, conductivity, dissolved oxygen, temperature, dissolved total solids and nitrate were quantified. Seasonal trend indicated sanitary effluents as a point source of contamination in both sampling points. Vertical trends demonstrated that the Municipal Dam was not stratified and received a diffuse source of pollutants from flooding and agriculture runoffs. It was also verified that there is relatively fast ammonia consumption kinetics having a half-life time of 1.43 h which can explain the low ammonia concentrations found in these aquatic bodies.
Resumo:
No presente trabalho de tese é apresentada uma nova técnica de empilhamento de dados sísmicos para a obtenção da seção de incidência normal ou afastamento fonte-receptor nulo, aplicável em meios bidimensionais com variações laterais de velocidade. Esta nova técnica denominada Empilhamento Sísmico pela Composição de Ondas Planas (empilhamento PWC) foi desenvolvida tomando como base os conceitos físicos e matemáticos da decomposição do campo de ondas em ondas planas. Este trabalho pode ser dividido em três partes: Uma primeira parte, onde se apresenta uma revisão da técnica de empilhamento sísmico convencional e do processo de decomposição do campo de ondas produzido a partir de fontes pontuais em suas correspondentes ondas planas. Na segunda parte, é apresentada a formulação matemática e o procedimento de aplicação do método de empilhamento sísmico pela composição de ondas planas. Na terceira parte se apresenta a aplicação desta nova técnica de empilhamento na serie de dados Marmousi e uma analise sobre a atenuação de ruído. A formulação matemática desta nova técnica de empilhamento sísmico foi desenvolvida com base na teoria do espalhamento aplicado a ondas sísmicas sob a restrição do modelo de aproximação de Born. Nesse sentido, inicialmente se apresenta a determinação da solução da equação de onda caustica para a configuração com afastamento fonte-receptor finito, que posteriormente é reduzido para a configuração de afastamento fonte-receptor nulo. Por outra parte, com base nessas soluções, a expressão matemática deste novo processo de empilhamento sísmico é resolvida dentro do contexto do modelo de aproximação de Born. Verificou-se que as soluções encontradas por ambos procedimentos, isto é, por meio da solução da equação da onda e pelo processo de empilhamento proposto, são iguais, mostrando-se assim que o processo de empilhamento pela composição de ondas planas produz uma seção com afastamento fonte-receptor nulo. Esta nova técnica de empilhamento basicamente consiste na aplicação de uma dupla decomposição do campo de ondas em onda planas por meio da aplicação de dois empilhamentos oblíquos (slant stack), isto é um ao longo do arranjo das fontes e outro ao longo do arranjo dos detectores; seguido pelo processo de composição das ondas planas por meio do empilhamento obliquo inverso. Portanto, com base nestas operações e com a ajuda de um exemplo de aplicação nos dados gerados a partir de um modelo simples, são descritos os fundamentos e o procedimento de aplicação (ou algoritmo) desta nova técnica de obtenção da seção de afastamento nulo. Como exemplo de aplicação do empilhamento PWC em dados correspondentes a um meio com variações laterais de velocidade, foi aplicado nos dados Marmousi gerados segundo a técnica de cobertura múltipla a partir de um modelo que representa uma situação geológica real. Por comparação da seção resultante com a similar produzida pelo método de empilhamento convencional, observa-se que a seção de afastamento nulo desta nova técnica apresenta melhor definição e continuidade dos reflectores, como também uma melhor caracterização da ocorrência de difrações. Por último, da atenuação de ruído aleatório realizada nos mesmos dados, observa-se que esta técnica de empilhamento também produz uma atenuação do ruído presente no sinal, a qual implica um aumento na relação sinal ruído.
Resumo:
Aims. Our goal is to study the circumstellar environment associated with each component of the wide intermediate-mass pre-main sequence binary system PDS 144 using broadband polarimetry. Methods. We present near-infrared (NIR) linear polarimetric observations of PDS 144 gathered with the IAGPOL imaging polarimeter along with the CamIV infrared camera at the Observatorio do Pico dos Dias (OPD). In addition, we re-analyzed OPD archive optical polarization to separate the binary and estimate the interstellar polarization using foreground stars. Results. After discounting the interstellar component, we found that both stars of the binary system are intrinsically polarized. The polarization vectors at optical and NIR bands of both components are aligned with the local magnetic field and the jet axis. These findings indicate an interplay between the interstellar magnetic field and the formation of the binary system. We also found that the PDS 144N is less polarized than its southern companion in the optical. However, in the NIR PDS 144N is more polarized. Our polarization data can only be explained by high inclinations (i greater than or similar to 80 degrees) for the disks of both members. In particular, comparisons of our NIR data with young stellar objects disk models suggest predominantly small grains in the circumstellar environment of PDS 144N. In spite of the different grain types in each component, the infrared spectral indexes indicate a coeval system. We also found evidence of coplanarity between the disks.
Resumo:
AIM: The main goal of this research was to investigate the influence of the hydrological pulses on the space-temporal dynamics of physical and chemical variables in a wetland adjacent to Jacupiranguinha River (São Paulo, Brazil); METHODS: Eleven sampling points were distributed among the wetland, a tributary by its left side and the adjacent river. Four samplings were carried out, covering the rainy and the dry periods. Measures of pH, dissolved oxygen, electrical conductivity and redox potential were taken in regular intervals of the water column using a multiparametric probe. Water samples were collected for the nitrogen and total phosphorus analysis, as well as their dissolved fractions (dissolved inorganic phosphorus, total dissolved phosphorus, ammoniacal nitrogen and nitrate). Total alkalinity and suspended solids were also quantified; RESULTS: The Multivariate Analysis of Variance showed the influence of the seasonality on the variability of the investigated variables, while the Principal Component Analysis gave rise in two statistical significant axes, which delimited two groups representative of the rainy and dry periods. Hydrological pulses from Jacupiranguinha River, besides contributing to the inputs of nutrients and sediments during the period of connectivity, accounted for the decrease in spatial gradients in the wetland. This "homogenization effect" was evidenced by the Cluster Analysis. The research also showed an industrial raw effluent as the main point source of phosphorus to the Jacupiranguinha River and, indirectly, to the wetland; CONCLUSIONS: Therefore, considering the scarcity of information about the wetlands in the study area, this research, besides contributing to the understanding of the influence of hydrological pulses on the investigated environmental variables, showed the need for adoption of conservation policies of these ecosystems face the increase anthropic pressures that they have been submitted, which may result in lack of their ecological, social and economic functions.
Resumo:
In the year 2013, the detection of a diffuse astrophysical neutrino flux with the IceCube neutrino telescope – constructed at the geographic South Pole – was announced by the IceCube collaboration. However, the origin of these neutrinos is still unknown as no sources have been identified to this day. Promising neutrino source candidates are blazars, which are a subclass of active galactic nuclei with radio jets pointing towards the Earth. In this thesis, the neutrino flux from blazars is tested with a maximum likelihood stacking approach, analyzing the combined emission from uniform groups of objects. The stacking enhances the sensitivity w.r.t. the still unsuccessful single source searches. The analysis utilizes four years of IceCube data including one year from the completed detector. As all results presented in this work are compatible with background, upper limits on the neutrino flux are given. It is shown that, under certain conditions, some hadronic blazar models can be challenged or even rejected. Moreover, the sensitivity of this analysis – and any other future IceCube point source search – was enhanced by the development of a new angular reconstruction method. It is based on a detailed simulation of the photon propagation in the Antarctic ice. The median resolution for muon tracks, induced by high-energy neutrinos, is improved for all neutrino energies above IceCube’s lower threshold at 0.1TeV. By reprocessing the detector data and simulation from the year 2010, it is shown that the new method improves IceCube’s discovery potential by 20% to 30% depending on the declination.
Resumo:
Information on phosphorus bioavailability can provide water quality managers with the support required to target point source and watershed loads contributing most significantly to water quality conditions. This study presents results from a limited sampling program focusing on the five largest sources of total phosphorus to the U.S. waters of the Great Lakes. The work provides validation of the utility of a bioavailability-based approach, confirming that the method is robust and repeatable. Chemical surrogates for bioavailability were shown to hold promise, however further research is needed to address site-to-site and seasonal variability before a universal relationship can be accepted. Recent changes in the relative contribution of P constituents to the total phosphorus analyte and differences in their bioavailability suggest that loading estimates of bioavailable P will need to address all three components (SRP, DOP and PP). A bioavailability approach, taking advantage of chemical surrogate methodologies is recommended as a means of guiding P management in the Great Lakes.
Resumo:
Objective: The PEM Flex Solo II (Naviscan, Inc., San Diego, CA) is currently the only commercially-available positron emission mammography (PEM) scanner. This scanner does not apply corrections for count rate effects, attenuation or scatter during image reconstruction, potentially affecting the quantitative accuracy of images. This work measures the overall quantitative accuracy of the PEM Flex system, and determines the contributions of error due to count rate effects, attenuation and scatter. Materials and Methods: Gelatin phantoms were designed to simulate breasts of different sizes (4 – 12 cm thick) with varying uniform background activity concentration (0.007 – 0.5 μCi/cc), cysts and lesions (2:1, 5:1, 10:1 lesion-to-background ratios). The overall error was calculated from ROI measurements in the phantoms with a clinically relevant background activity concentration (0.065 μCi/cc). The error due to count rate effects was determined by comparing the overall error at multiple background activity concentrations to the error at 0.007 μCi/cc. A point source and cold gelatin phantoms were used to assess the errors due to attenuation and scatter. The maximum pixel values in gelatin and in air were compared to determine the effect of attenuation. Scatter was evaluated by comparing the sum of all pixel values in gelatin and in air. Results: The overall error in the background was found to be negative in phantoms of all thicknesses, with the exception of the 4-cm thick phantoms (0%±7%), and it increased with thickness (-34%±6% for the 12-cm phantoms). All lesions exhibited large negative error (-22% for the 2:1 lesions in the 4-cm phantom) which increased with thickness and with lesion-to-background ratio (-85% for the 10:1 lesions in the 12-cm phantoms). The error due to count rate in phantoms with 0.065 μCi/cc background was negative (-23%±6% for 4-cm thickness) and decreased with thickness (-7%±7% for 12 cm). Attenuation was a substantial source of negative error and increased with thickness (-51%±10% to -77% ±4% in 4 to 12 cm phantoms, respectively). Scatter contributed a relatively constant amount of positive error (+23%±11%) for all thicknesses. Conclusion: Applying corrections for count rate, attenuation and scatter will be essential for the PEM Flex Solo II to be able to produce quantitatively accurate images.
Resumo:
Stray light contamination reduces considerably the precision of photometric of faint stars for low altitude spaceborne observatories. When measuring faint objects, the necessity of coping with stray light contamination arises in order to avoid systematic impacts on low signal-to-noise images. Stray light contamination can be represented by a flat offset in CCD data. Mitigation techniques begin by a comprehensive study during the design phase, followed by the use of target pointing optimisation and post-processing methods. We present a code that aims at simulating the stray-light contamination in low-Earth orbit coming from reflexion of solar light by the Earth. StrAy Light SimulAtor (SALSA) is a tool intended to be used at an early stage as a tool to evaluate the effective visible region in the sky and, therefore to optimise the observation sequence. SALSA can compute Earth stray light contamination for significant periods of time allowing missionwide parameters to be optimised (e.g. impose constraints on the point source transmission function (PST) and/or on the altitude of the satellite). It can also be used to study the behaviour of the stray light at different seasons or latitudes. Given the position of the satellite with respect to the Earth and the Sun, SALSA computes the stray light at the entrance of the telescope following a geometrical technique. After characterising the illuminated region of the Earth, the portion of illuminated Earth that affects the satellite is calculated. Then, the flux of reflected solar photons is evaluated at the entrance of the telescope. Using the PST of the instrument, the final stray light contamination at the detector is calculated. The analysis tools include time series analysis of the contamination, evaluation of the sky coverage and an objects visibility predictor. Effects of the South Atlantic Anomaly and of any shutdown periods of the instrument can be added. Several designs or mission concepts can be easily tested and compared. The code is not thought as a stand-alone mission designer. Its mandatory inputs are a time series describing the trajectory of the satellite and the characteristics of the instrument. This software suite has been applied to the design and analysis of CHEOPS (CHaracterizing ExOPlanet Satellite). This mission requires very high precision photometry to detect very shallow transits of exoplanets. Different altitudes and characteristics of the detector have been studied in order to find the best parameters, that reduce the effect of contamination. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Resumo:
Surgical robots have been proposed ex vivo to drill precise holes in the temporal bone for minimally invasive cochlear implantation. The main risk of the procedure is damage of the facial nerve due to mechanical interaction or due to temperature elevation during the drilling process. To evaluate the thermal risk of the drilling process, a simplified model is proposed which aims to enable an assessment of risk posed to the facial nerve for a given set of constant process parameters for different mastoid bone densities. The model uses the bone density distribution along the drilling trajectory in the mastoid bone to calculate a time dependent heat production function at the tip of the drill bit. Using a time dependent moving point source Green's function, the heat equation can be solved at a certain point in space so that the resulting temperatures can be calculated over time. The model was calibrated and initially verified with in vivo temperature data. The data was collected in minimally invasive robotic drilling of 12 holes in four different sheep. The sheep were anesthetized and the temperature elevations were measured with a thermocouple which was inserted in a previously drilled hole next to the planned drilling trajectory. Bone density distributions were extracted from pre-operative CT data by averaging Hounsfield values over the drill bit diameter. Post-operative [Formula: see text]CT data was used to verify the drilling accuracy of the trajectories. The comparison of measured and calculated temperatures shows a very good match for both heating and cooling phases. The average prediction error of the maximum temperature was less than 0.7 °C and the average root mean square error was approximately 0.5 °C. To analyze potential thermal damage, the model was used to calculate temperature profiles and cumulative equivalent minutes at 43 °C at a minimal distance to the facial nerve. For the selected drilling parameters, temperature elevation profiles and cumulative equivalent minutes suggest that thermal elevation of this minimally invasive cochlear implantation surgery may pose a risk to the facial nerve, especially in sclerotic or high density mastoid bones. Optimized drilling parameters need to be evaluated and the model could be used for future risk evaluation.
Resumo:
The purpose of this study was to investigate presence and potential accumulation of cyclic volatile methyl siloxanes (cVMS) in the Arctic environment. Octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcy-clohexasiloxane (D6) were analyzed in sediment, Zooplankton, Atlantic cod (Gadus morhua), shorthorn sculpin (Myxocephalus scorpius), and bearded seal (Erignathus barbatus) collected from the Svalbard archipelago within the European Arctic in July 2009. Highest levels were found for D5 in fish collected from Adventfjorden, with average concentrations of 176 and 531 ng/g lipid in Atlantic cod and shorthorn sculpin, respectively. Decreasing concentration of D5 in sediment collected away from waste water outlet in Adventfjorden indicates that the local settlement of Longyearbyen is a point source to the local aquatic environment. Median biota sediment accumulation factors (BSAFs) calculated for D5 in Adventfjorden were 2.1 and 1.5 for Atlantic cod and shorthorn sculpin, respectively. Biota concentrations of D5 were lower or below detection limits in remote and sparsely populated regions (Kongsfjorden and Liefdefjorden) compared to Adventfjorden. The levels of cVMS were found to be low or below detection limits in bearded seal blubber and indicate a low risk for cVMS accumulation within mammals. Accumulation of cVMS in fish appears to be influenced by local exposure from human settlements within the Arctic.