983 resultados para Plastic optical fiber (POF)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The humidity sensor made of polymer optical fiber Bragg grating (POFBG) responds to the water content change in fiber induced by the change of environmental condition. The response time strongly depends on fiber size as the water change is a diffusion process. The ultra short laser pulses have been providing an effective micro fabrication method to achieve spatial localized modification in materials. In this work we used the excimer laser to create different microstructures (slot, D-shape) in POFBG to improve its performance. A significant improvement in the response time has been achieved in a laser etched D-shaped POFBG humidity sensor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transient fully reconfigurable photonic circuits can be introduced at the optical fiber surface with subangstrom precision. A building block of these circuits - a 0.7Å-precise nano-bottle resonator - is experimentally created by local heating, translated, and annihilated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a highly sensitive, high Q-factor, label free and selective glucose sensor by using excessively tilted fiber grating (Ex-TFG) inscribed in the thin-cladding optical fiber (TCOF). Glucose oxidase (GOD) was covalently immobilized on optical fiber surface and the effectiveness of GOD immobilization was investigated by the fluorescence microscopy and highly accurate spectral interrogation method. In contrast to the long period grating (LPG) and optical fiber (OF) surface Plasmon resonance (SPR) based glucose sensors, the Ex-TFG configuration has merits of nearly independent cross sensitivity of the environmental temperature, simple fabrication method (no noble metal deposition or cladding etching) and high detection accuracy (or Q-factor). Our experimental results have shown that Ex-TFG in TCOF based sensor has a reliable and fast detection for the glucose concentration as low as 0.1~2.5mg/ml and a high sensitivity of ~1.514nm·(mg/ml)−1, which the detection accuracy is ~0.2857nm−1 at pH 5.2, and the limit of detection (LOD) is 0.013~0.02mg/ml at the pH range of 5.2~7.4 by using an optical spectrum analyzer with a resolution of 0.02nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modulation instability (MI) in optical fiber amplifiers and lasers with anomalous dispersion leads to CW beam breakup and the growth of multiple pulses. This can be both a detrimental effect, limiting the performance of amplifiers, and also an underlying physical mechanism in the operation of MI-based devices. Here we revisit the analytical theory of MI in fiber optical amplifiers. The results of the exact theory are compared with the previously used adiabatic approximation model, and the range of applicability of the latter is determined. The same technique is applicable to the study of spatial MI in solid state laser amplifiers and MI in non-uniform media. © 2011 SPIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we investigate the effect of temperature and diameter size on the response time of a poly(methyl methacrylate) based, polymer optical fibre Bragg grating water activity sensor. The unstrained and etched sensor was placed in an environmental chamber to maintain controlled temperature and humidity conditions and subjected to step changes in humidity. The data show a strong correlation between decrease in diameter and shorter response time. A decrease in response time was also observed with an increase in temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tunable photonic elements at the surface of an optical fiber with piezoelectric core are proposed and analyzed theoretically. These elements are based on whispering gallery modes whose propagation along the fiber is fully controlled by nanoscale variation of the effective fiber radius, which can be tuned by means of a piezoelectric actuator embedded into the core. The developed theory allows one to express the introduced effective radius variation through the shape of the actuator and the voltage applied to it. In particular, the designs of a miniature tunable optical delay line and a miniature tunable dispersion compensator are presented. The potential application of the suggested model to the design of a miniature optical buffer is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have UV-inscribed fiber Bragg gratings (FBGs), long-period gratings (LPGs), and tilted fiber gratings (TFGs) into mid-IR 2μm range using three common optical fiber grating fabrication techniques (two-beam holographic, phase mask, and point-by-point). The fabricated FBGs have been evaluated for thermal and strain response. It has been revealed that the FBG devices with responses in mid-IR range are much more sensitive to temperature than that in near-IR range. To explore the unique cladding mode coupling function, we have investigated the thermal and refractive index sensitivities of LPGs and identified that the coupled cladding modes in mid-IR range are also much more sensitive to temperature and surrounding medium refractive index change. The 45° tilted fiber gratings (45°-TFGs) as polarizing devices in mid-IR have been investigated for their polarization extinction characteristics. As efficient reflection filters and in-cavity polarizers, the mid-IR FBGs and 45°-TFGs have been employed in fiber laser cavity to realize multi-wavelength 2 μm Tm-doped CW and mode locked fiber lasers, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modulation instability (MI) in optical fiber amplifiers and lasers with anomalous dispersion leads to cw radiation breakup. This can be both a detrimental effect limiting the performance of amplifiers and an underlying physical mechanism in the operation of MI-based devices. Here we revisit the analytical theory of MI in fiber optical amplifiers. The results of the exact theory are compared with the previously used adiabatic approximation model, and the range of applicability of the latter is determined. © 2010 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high-performance fuel gauging sensor is described that uses five diaphragm-based pressure sensors, which are monitored using a linear array of polymer optical fiber Bragg gratings. The sensors were initially characterized using water, revealing a sensitivity of 98 pm/cm for four of the sensors and 86 pm/cm for the fifth. The discrepancy in the sensitivity of the fifth sensor has been explained as being a result of the annealing of the other four sensors. Initial testing in JET A-1 aviation fuel revealed the unsuitability of silicone rubber diaphragms for prolonged usage in fuel. A second set of sensors manufactured with a polyurethane-based diaphragm showed no measurable deterioration over a three month period immersed in fuel. These sensors exhibited a sensitivity of 39 pm/cm, which is less than the silicone rubber devices due to the stiffer nature of the polyurethane material used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In traditional electrical sensing applications, multiplexing and interconnecting the different sensing elements is a major challenge. Recently, many optical alternatives have been investigated including optical fiber sensors of which the sensing elements consist of fiber Bragg gratings. Different sensing points can be integrated in one optical fiber solving the interconnection problem and avoiding any electromagnetical interference (EMI). Many new sensing applications also require flexible or stretchable sensing foils which can be attached to or wrapped around irregularly shaped objects such as robot fingers and car bumpers or which can even be applied in biomedical applications where a sensor is fixed on a human body. The use of these optical sensors however always implies the use of a light-source, detectors and electronic circuitry to be coupled and integrated with these sensors. The coupling of these fibers with these light sources and detectors is a critical packaging problem and as it is well-known the costs for packaging, especially with optoelectronic components and fiber alignment issues are huge. The end goal of this embedded sensor is to create a flexible optical sensor integrated with (opto)electronic modules and control circuitry. To obtain this flexibility, one can embed the optical sensors and the driving optoelectronics in a stretchable polymer host material. In this article different embedding techniques for optical fiber sensors are described and characterized. Initial tests based on standard manufacturing processes such as molding and laser structuring are reported as well as a more advanced embedding technique based on soft lithography processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose an orthogonal chirp division multiplexing (OCDM) technique for coherent optical communication. OCDM is the principle of orthogonally multiplexing a group of linear chirped waveforms for high-speed data communication, achieving the maximum spectral efficiency (SE) for chirp spread spectrum, in a similar way as the orthogonal frequency division multiplexing (OFDM) does for frequency division multiplexing. In the coherent optical (CO)-OCDM, Fresnel transform formulates the synthesis of the orthogonal chirps; discrete Fresnel transform (DFnT) realizes the CO-OCDM in the digital domain. As both the Fresnel and Fourier transforms are trigonometric transforms, the CO-OCDM can be easily integrated into the existing CO-OFDM systems. Analyses and numerical results are provided to investigate the transmission of CO-OCDM signals over optical fibers. Moreover, experiments of 36-Gbit/s CO-OCDM signal are carried out to validate the feasibility and confirm the analyses. It is shown that the CO-OCDM can effectively compensate the dispersion and is more resilient to fading and noise impairment than OFDM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Safety in civil aviation is increasingly important due to the increase in flight routes and their more challenging nature. Like other important systems in aircraft, fuel level monitoring is always a technical challenge. The most frequently used level sensors in aircraft fuel systems are based on capacitive, ultrasonic and electric techniques, however they suffer from intrinsic safety concerns in explosive environments combined with issues relating to reliability and maintainability. In the last few years, optical fiber liquid level sensors (OFLLSs) have been reported to be safe and reliable and present many advantages for aircraft fuel measurement. Different OFLLSs have been developed, such as the pressure type, float type, optical radar type, TIR type and side-leaking type. Amongst these, many types of OFLLSs based on fiber gratings have been demonstrated. However, these sensors have not been commercialized because they exhibit some drawbacks: low sensitivity, limited range, long-term instability, or limited resolution. In addition, any sensors that involve direct interaction of the optical field with the fuel (either by launching light into the fuel tank or via the evanescent field of a fiber-guided mode) must be able to cope with the potential build up of contamination-often bacterial-on the optical surface. In this paper, a fuel level sensor based on microstructured polymer optical fiber Bragg gratings (mPOFBGs), including poly (methyl methacrylate) (PMMA) and TOPAS fibers, embedded in diaphragms is investigated in detail. The mPOFBGs are embedded in two different types of diaphragms and their performance is investigated with aviation fuel for the first time, in contrast to our previous works, where water was used. Our new system exhibits a high performance when compared with other previously published in the literature, making it a potentially useful tool for aircraft fuel monitoring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water contamination can cause serious problems that compromise in transformer's safe operation and reduce its lifetime. Online monitoring of moisture concentration in transformer oil would permit the control of moisture buildup. This letter presents a direct optical measurement of moisture concentration in transformer oil using a poly(methyl methacrylate) (PMMA)-based optical fiber Bragg grating (POFBG). The refractive index and volume of PMMA-based optical fiber vary with the moisture in the surrounding transformer oil, changing the reflecting wavelength of the grating. A sensitivity of POFBG wavelength change to moisture content of 29 pm/ppm is demonstrated in this letter, indicating detectable water content better than 0.05 ppm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, composite materials have revolutionized the design of many structures. Their superior mechanical properties and light weight make composites convenient over traditional metal structures for many applications. However, composite materials are susceptible to complex and challenging to predict damage behaviors due to their anisotropy nature. Therefore, structural Health Monitoring (SHM) can be a valuable tool to assess the damage and understand the physics underneath. Distributed Optical Fiber Sensors (DOFS) can be used to monitor several types of damage in composites. However, their implementation outside academia is still unsatisfactory. One of the hindrances is the lack of a rigorous methodology for uncertainty quantification, which is essential for the performance assessment of the monitoring system. The concept of Probability of Detection (POD) must function as the guiding light in this process. However, precautions must be taken since this tool was established for Non-Destructive Evaluation (NDE) rather than Structural Health Monitoring (SHM). In addition, although DOFS have been the object of numerous studies, a well-established POD methodology for their performance assessment is still missing. This thesis aims to develop a methodology to produce POD curves for DOFS in composite materials. The problem is analyzed considering several critical points, such as the strain transfer characterizing the DOFS and the development of an experimental and model-assisted methodology to understand the parameters that affect the DOFS performance.