874 resultados para Plants -- Effect of atmospheric carbon dioxide on
Resumo:
Fluctuations of trace gas activity as a response to variations in weather and microclimate conditions were monitored over a year in a shallow volcanic cave (Painted Cave, Galdar, Canary Islands, Spain). 222Rn concentration was used due to its greater sensitivity to hygrothermal variations than CO2 concentration. Radon concentration in the cave increases as effective vapour condensation within the porous system of the rock surfaces inside the cave increases due to humidity levels of more than 70%. Condensed water content in pores was assessed and linked to a reduction in the direct passage of trace gases. Fluctuations in radon activity as a response to variations in weather and microclimate conditions were statistically identified by clustering entropy changes on the radon signal and parameterised to predict radon concentration anomalies. This raises important implications for other research fields, including the surveillance of shallow volcanic and seismic activity, preventive conservation of cultural heritage in indoor spaces, indoor air quality control and studies to improve understanding of the role of subterranean terrestrial ecosystems as reservoirs and/or temporary sources of trace gases.
Resumo:
"Contract No. AT-30-1 Gen-366."
Resumo:
Recent research suggests that future decreases in the carbonate saturation state of surface seawater associated with the projected build-up of atmospheric CO2 could cause a global decline in coral reef-building capacity. Whether significant reductions in coral calcification are underway is a matter of considerable debate. Multicentury records of skeletal calcification extracted from massive corals have the potential to reconstruct the progressive effect of anthropogenic changes in carbonate saturation on coral reefs. However, early marine aragonite cements are commonly precipitated from pore waters in the basal portions of massive coral skeletons and, if undetected, could result in apparent nonlinear reductions in coral calcification toward the present. To address this issue, we present records of coral skeletal density, extension rate, calcification rate, δ13C, and δ18O for well preserved and diagenetically altered coral cores spanning ∼1830-1994 A.D. at Ningaloo Reef Marine Park, Western Australia. The record for the pristine coral shows no significant decrease in skeletal density or δ13C indicative of anthropogenic changes in carbonate saturation state or δ13C of surface seawater (oceanic Suess effect). In contrast, progressive addition of early marine inorganic aragonite toward the base of the altered coral produces an apparent ∼25% decrease in skeletal density toward the present, which misleadingly matches the nonlinear twentieth century decrease in coral calcification predicted by recent modeling and experimental studies. In addition, the diagenetic aragonite is enriched in 13C, relative to coral aragonite, resulting in a nonlinear decrease in δ13C toward the present that mimics the decrease in δ13C expected from the oceanic Suess effect. Taken together, these diagenetic changes in skeletal density and δ13C could be misinterpreted to reflect changes in surface-ocean carbonate saturation state driven by the twentieth century build-up of atmospheric CO2. Copyright 2004 by the American Geophysical Union.
Resumo:
Various mesoporous catalysts with vanadium loadings between 0.5 and 6 V wt.% and surface areas around 1300 m(2)/g were synthesized using the isomorphous substitution (IS) and molecular designed dispersion (MDD) techniques. Their catalytic properties were tested using toluene as a model VOC in a fixed bed reactor at temperatures between 300 and 550 degrees C. It was found that during the oxidation of toluene, over V-HMS synthesized via IS, conversion of toluene mainly results in carbon oxides, benzene, benzaldehyde and water. Total conversion is greatly improved when the vanadium content is increased from around 1.5 to 3.0 wt.%, but an increase in the textural porosity (V-TEX/V-MESO) from 0.3 to 0.6 had no discernable effect on the conversion. This can be explained by the fact that a V-TEX/V-MESO as low as 0.3 is sufficient to facilitate the access of toluene into the framework confined mesopores without any molecular transport limitations. However, when using V-HMS synthesized by MDD, conversion of toluene is greatly improved when the V-TEX/ V-MESO ratio is increased from 0.1 to 0.6. This is because the diffusion limitations are minimized by this increase. V-HMS synthesized via MDD does not exhibit selectivity to benzaldehyde, favoring total oxidation to CO and CO2. This different oxidation mechanism can be explained in terms of location, accessibility and number of active species on the surface of the HMS support. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
A clinical isolate of Proteus mirabilis containing R-plasmid RP1 (R+ cells), grown in both iron- and carbon- limited chemically defined media in mixed culture with plasmid-free (R- cells), did not disappear as expected, due to adherence of R+ cells to the wall of the chemostat vessel. Plasmid RP1 promoted adherence to glass and to medical prostheses. The hydrophobicity and surface charge of R+ cells were different from those of R- cells and both factors may contribute to the adherence of R+ cells to surfaces. The mode of cultivation of the cells, whether batch or continuous culture, were also found to affect the result. Antibodies raised against homologous cells increased the surface hydrophobicity of both R+ and R- cells and eliminated the differences between them. Results for surface hydrophobicity varied with the method used for measuring it. R+ cells were more sensitive than R- cells to tbe bacteridical action of normal serum and whole blood and to phagocytosis as measured by chemiluminescence. No clear differences were revealed in the protein antigens of R+ and R- cells by both SDS PAGE gels and immunoblots reacted with homologous antibodies. However, lectins revealed differences in the sugars exposed on the cell surfaces. Chemical analysis of R&43 and R- cells also revealed differences in the content of 2-keto-3-deoxy-D-manno-2-octulosonate, lipopolysaccharide and total fatty acids, when cells were grown in media containing added iron; however, no qualitative differences in the lipopolysaccharide were found. Removal of iron from the medium was found to have considerable effects on the chemical structure of R+ cells but not of R- ones. Adhesion to prostheses and to leucocytes is discussed in the light of the results and the clinical relevance outlined with respect to the initiation of infection and the association of virulence with antibiotic resistance.
Resumo:
A szerző egy, a szennyezőanyag-kibocsátás európai kereskedelmi rendszerében megfelelésre kötelezett gázturbinás erőmű szén-dioxid-kibocsátását modellezi négy termékre (völgy- és csúcsidőszaki áramár, gázár, kibocsátási kvóta) vonatkozó reálopciós modell segítségével. A profitmaximalizáló erőmű csak abban az esetben termel és szennyez, ha a megtermelt áramon realizálható fedezete pozitív. A jövőbeli időszak összesített szén-dioxid-kibocsátása megfeleltethető európai típusú bináris különbözetopciók összegének. A modell keretein belül a szén-dioxid-kibocsátás várható értékét és sűrűségfüggvényét becsülhetjük, az utóbbi segítségével a szén-dioxid-kibocsátási pozíció kockáztatott értékét határozhatjuk meg, amely az erőmű számára előírt megfelelési kötelezettség teljesítésének adott konfidenciaszint melletti költségét jelenti. A sztochasztikus modellben az alaptermékek geometriai Ornstein-Uhlenbeck-folyamatot követnek. Ezt illesztette a szerző a német energiatőzsdéről származó publikus piaci adatokra. A szimulációs modellre támaszkodva megvizsgálta, hogy a különböző technológiai és piaci tényezők ceteris paribus megváltozása milyen hatással van a megfelelés költségére, a kockáztatott értékére. ______ The carbon-dioxide emissions of an EU Emissions Trading System participant, gas-fuelled power generator are modelled by using real options for four underlying instruments (peak and off-peak electricity, gas, emission quota). This profit-maximizing power plant operates and emits pollution only if its profit (spread) on energy produced is positive. The future emissions can be estimated by a sum of European binary-spread options. Based on the real-option model, the expected value of emissions and its probability-density function can be deducted. Also calculable is the Value at Risk of emission quota position, which gives the cost of compliance at a given confidence level. To model the prices of the four underlying instruments, the geometric Ornstein-Uhlenbeck process is supposed and matched to public available price data from EEX. Based on the simulation model, the effects of various technological and market factors are analysed for the emissions level and the cost of compliance.
Resumo:
With the aim of producing materials with enhanced optical and photocatalytic properties, titanate nanotubes (TNTs) modified by cobalt doping (Co-TNT) and by Na+ -> Co ion-exchange (TNT/Co) were successfully prepared by a hydrothermal method. The influence of the doping level and of the cobalt position in the TNT crystalline structure was studied. Although no perceptible influence of the cobalt ion position on the morphology of the prepared titanate nanotubes was observed, the optical behaviour of the cobalt modified samples is clearly dependent on the cobalt ions either substituting the Ti4+ ions in the TiO6 octahedra building blocks of the TNT structure (doped samples) or replacing the Na+ ions between the TiO6 interlayers (ion-exchange samples). The catalytic ability of these materials on pollutant photodegradation was investigated. First, the evaluation of hydroxyl radical formation using the terephthalic acid as a probe was performed. Afterwards, phenol, naphthol yellow S and brilliant green were used as model pollutants. Anticipating real world situations, photocatalytic experiments were performed using solutions combining these pollutants. The results show that the Co modified TNT materials (Co-TNT and TNT/Co) are good catalysts, the photocatalytic performance being dependent on the Co/Ti ratio and on the structural metal location. The Co(1%)-TNT doped sample was the best photocatalyst for all the degradation processes studied.
Resumo:
This study investigated the effect of simulated microwave disinfection (SMD) on the linear dimensional changes, hardness and impact strength of acrylic resins under different polymerization cycles. Metal dies with referential points were embedded in flasks with dental stone. Samples of Classico and Vipi acrylic resins were made following the manufacturers' recommendations. The assessed polymerization cycles were: A-- water bath at 74ºC for 9 h; B-- water bath at 74ºC for 8 h and temperature increased to 100ºC for 1 h; C-- water bath at 74ºC for 2 h and temperature increased to 100ºC for 1 h;; and D-- water bath at 120ºC and pressure of 60 pounds. Linear dimensional distances in length and width were measured after SMD and water storage at 37ºC for 7 and 30 days using an optical microscope. SMD was carried out with the samples immersed in 150 mL of water in an oven (650 W for 3 min). A load of 25 gf for 10 sec was used in the hardness test. Charpy impact test was performed with 40 kpcm. Data were submitted to ANOVA and Tukey's test (5%). The Classico resin was dimensionally steady in length in the A and D cycles for all periods, while the Vipi resin was steady in the A, B and C cycles for all periods. The Classico resin was dimensionally steady in width in the C and D cycles for all periods, and the Vipi resin was steady in all cycles and periods. The hardness values for Classico resin were steady in all cycles and periods, while the Vipi resin was steady only in the C cycle for all periods. Impact strength values for Classico resin were steady in the A, C and D cycles for all periods, while Vipi resin was steady in all cycles and periods. SMD promoted different effects on the linear dimensional changes, hardness and impact strength of acrylic resins submitted to different polymerization cycles when after SMD and water storage were considered.
Resumo:
This study investigated the effect of simulated microwave disinfection (SMD) on the linear dimensional changes, hardness and impact strength of acrylic resins under different polymerization cycles. Metal dies with referential points were embedded in flasks with dental stone. Samples of Classico and Vipi acrylic resins were made following the manufacturers' recommendations. The assessed polymerization cycles were: A) water bath at 74 ºC for 9 h; B) water bath at 74 ºC for 8 h and temperature increased to 100 ºC for 1 h; C) water bath at 74 ºC for 2 h and temperature increased to 100 ºC for 1 h; and D) water bath at 120 ºC and pressure of 60 pounds. Linear dimensional distances in length and width were measured after SMD and water storage at 37 ºC for 7 and 30 days using an optical microscope. SMD was carried out with the samples immersed in 150 mL of water in an oven (650 W for 3 min). A load of 25 gf for 10 s was used in the hardness test. Charpy impact test was performed with 40 kpcm. Data were submitted to ANOVA and Tukey's test (5%). The Classico resin was dimensionally steady in length in the A and D cycles for all periods, while the Vipi resin was steady in the A, B and C cycles for all periods. The Classico resin was dimensionally steady in width in the C and D cycles for all periods, and the Vipi resin was steady in all cycles and periods. The hardness values for Classico resin were steady in all cycles and periods, while the Vipi resin was steady only in the C cycle for all periods. Impact strength values for Classico resin were steady in the A, C and D cycles for all periods, while Vipi resin was steady in all cycles and periods. SMD promoted different effects on the linear dimensional changes, hardness and impact strength of acrylic resins submitted to different polymerization cycles when after SMD and water storage were considered.
Resumo:
Although several treatments for tendon lesions have been proposed, successful tendon repair remains a great challenge for orthopedics, especially considering the high incidence of re-rupture of injured tendons. Our aim was to evaluate the pharmacological potential of Aloe vera on the content and arrangement of glycosaminoglycans (GAGs) during tendon healing, which was based on the effectiveness of A. vera on collagen organization previously observed by our group. In rats, a partial calcaneal tendon transection was performed with subsequent topical A. vera application at the injury site. The tendons were treated with A. vera ointment for 7 days and excised on the 7(th) , 14(th) , or 21(st) day post-surgery. Control rats received ointment without A. vera. A higher content of GAGs and a lower amount of dermatan sulfate were detected in the A. vera-treated group on the 14(th) day compared with the control. Also at 14 days post-surgery, a lower dichroic ratio in toluidine blue stained sections was observed in A. vera-treated tendons compared with the control. No differences were observed in the chondroitin-6-sulfate and TGF-β1 levels between the groups, and higher amount of non-collagenous proteins was detected in the A. vera-treated group on the 21(st) day, compared with the control group. No differences were observed in the number of fibroblasts, inflammatory cells and blood vessels between the groups. The application of A. vera during tendon healing modified the arrangement of GAGs and increased the content of GAGs and non-collagenous proteins.
Resumo:
In recent years, the scientific community has undertaken research on plant extracts, searching for compounds with pharmacological activities that can be used in diverse fields of medicine. Calendula officinalis L. is known to have antioxidant, anti-inflammatory, antibacterial, and wound healing properties when used to treat skin burns. Therefore, the purpose of this study was to analyze the effects of C. officinalis on the initial phase of Achilles tendon healing. Wistar rats were separated in three groups: Calendula (Cal)-rats with a transected tendon were treated with topical applications of C. officinalis cream and then euthanized 7 days after injury; Control (C)-rats were treated with only vehicle after transection; and Normal (N)-rats without tenotomy. Higher concentrations of hydroxyproline (an indicator of total collagen) and non-collagenous proteins were observed in the Cal group in relation to the C group. Zymography showed no difference in the amount of the isoforms of metalloproteinase-2 and of metalloproteinase-9, between C and Cal groups. Polarization microscopy images analysis showed that the Cal group presented a slightly higher birefringence compared with the C group. In sections of tendons stained with toluidine blue, the transected groups presented higher metachromasy as compared with the N group. Immunocytochemistry analysis for chondroitin-6-sulfate showed no difference between the C and Cal groups. In conclusion, the topical application of C. officinalis after tendon transection increases the concentrations of collagen and non-collagenous proteins, as well as the collagen organization in the initial phase of healing.
Resumo:
OBJECTIVE: This study investigated the effect of different ferrule heights on endodontically treated premolars. MATERIAL AND METHODS: Fifty sound mandibular first premolars were endodontically treated and then restored with 7-mm fiber post (FRC Postec Plus #1 Ivoclar-Vivadent) luted with self-polymerized resin cement (Multilink, Ivoclar Vivadent) while the coronal section was restored with hybrid composite core build-up material (Tetric Ceram, Ivoclar-Vivadent), which received all-ceramic crown. Different ferrule heights were investigated: 1-mm circumferential ferrule without post and core (group 1 used as control), a circumferential 1-mm ferrule (group 2), non-uniform ferrule 2-mm buccally and 1-mm lingually (group 3), non-uniform ferrule 3-mm buccally and 2-mm lingually (group 4), and finally no ferrule preparation (group 5). The fracture load and failure pattern of the tested groups were investigated by applying axial load to the ceramic crowns (n=10). Data were analyzed statistically by one-way ANOVA and Tukey's post-hoc test was used for pair-wise comparisons (α=0.05). RESULTS: There were no significant differences among the failure load of all tested groups (P<0.780). The control group had the lowest fracture resistance (891.43±202.22 N) and the highest catastrophic failure rate (P<0.05). Compared to the control group, the use of fiber post reduced the percentage of catastrophic failure while increasing the ferrule height did not influence the fracture resistance of the restored specimens. CONCLUSIONS: Within the limitations of this study, increasing the ferrule length did not influence the fracture resistance of endodontically treated teeth restored with glass ceramic crowns. Insertion of a fiber post could reduce the percentage of catastrophic failure of these restorations under function.
Resumo:
Among the different properties that influence bone apposition around implants, the chemical or biochemical composition of implant surface may interfere on its acceptance by the surrounding bone. The aim of this study was to investigate if a biofunctionalization of implant surface influences the bone apposition in a dog model and to compare it with other surfaces, such as a microstructured created by the grit-blasting/acid-etching process. Eight young adult male mongrel dogs had the bilateral mandibular premolars extracted and each one received 6 implants after 12 weeks, totaling 48 implants in the experiment. Four groups of implants were formed with the same microrough topography with or without some kind of biofunctionalization treatment. After histomorphometric analysis, it was observed that the modified microstructured surface with a "low concentration of the bioactive peptide" provided a higher adjacent bone density (54.6%) when compared to the other groups (microstructured + HA coating = 46.0%, microstructured only = 45.3% and microstructured + "high concentration of the bioactive peptide" = 40.7%), but this difference was not statistically significant. In conclusion, biofunctionalization of the implant surface might interfere in the bone apposition around implants, especially in terms of bone density. Different concentrations of bioactive peptide lead to different results.
Resumo:
This study analyzed the reaction layer and measured the marginal crown fit of cast titanium applied to different phosphate-bonded investments, prepared under the following conditions (liquid concentration/casting temperature): Rema Exakt (RE) - 100%/237°C, 75%/287°C, Castorit Super C (CS)-100%/70°C, 75%/141°C and Rematitan Plus (RP)- 100%/430°C (special to titanium cast, as the control group). The reaction layer was studied using the Vickers hardness test, and analyzed by two way ANOVA and Tukey's HSD tests (α = 0.05). Digital photographs were taken of the crowns seated on the die, the misfit was measured using an image analysis system and One-way ANOVA, and Tukey's test was applied (α = 0.05). The hardness decreased from the surface (601.17 VHN) to 150 μm (204.03 VHN). The group CS 75%/141°C presented higher hardness than the other groups, revealing higher surface contamination, but there were no differences among the groups at measurements deeper than 150 μm. The castings made with CS - 100%/70°C presented the lowest levels of marginal misfit, followed by RE -100%/237°C. The conventional investments CS (100%) and RE (100%) showed better marginal fit than RP, but the CS (75%) had higher surface contamination.
Resumo:
This study evaluated the effects of fluoride-containing solutions on the surface of commercially pure titanium (CP Ti) obtained by casting. CP Ti specimens were fabricated and randomly assigned to 5 groups (n=10): group 1: stored in distilled water at 37 ± 1ºC; group 2: stored in distilled water at 37 ± 1ºC and daily immersed in 0.05% NaF for 3 min; group 3: stored in distilled water at 37 ± 1ºC and daily immersed in 0.2% NaF for 3 min; group 4: stored in distilled water at 37 ± 1ºC; and immersed in 0.05% NaF every 15 days for 3 min; and group 5: stored in distilled water at 37 ± 1ºC and immersed in 0.2% NaF every 15 days for 3 min. Surface roughness was measured with a profilometer immediately after metallographic polishing of the specimens (T0) and at 15-day intervals until completing 60 days of experiment (T15, T30, T45, T60). Data were analyzed statistically by ANOVA and Tukey's test (α=0.05). There was no statistically significant difference (p>0.05) in surface roughness among the solutions. In conclusion, fluoride-containing solutions (pH 7.0) used as mouthwashes do not damage the surface of cast CP Ti and can be used by patients with titanium-based restorations.