795 resultados para Planning decision support systems
Resumo:
Over the last decade, system integration has grown in popularity as it allows organisations to streamline business processes. Traditionally, system integration has been conducted through point-to-point solutions – as a new integration scenario requirement arises, a custom solution is built between the relevant systems. Bus-based solutions are now preferred, whereby all systems communicate via an intermediary system such as an enterprise service bus, using a common data exchange model. This research investigates the use of a common data exchange model based on open standards, specifically MIMOSA OSA-EAI, for asset management system integration. A case study is conducted that involves the integration of processes between a SCADA, maintenance decision support and work management system. A diverse number of software platforms are employed in developing the final solution, all tied together through MIMOSA OSA-EAI-based XML web services. The lessons learned from the exercise are presented throughout the paper.
Resumo:
This paper proposes a novel automated separation management concept in which onboard decision support is integrated within a centralised air traffic separation management system. The onboard decision support system involves a decentralised separation manager that can overrule air traffic management instructions under certain circumstances. This approach allows the advantages of both centralised and decentralised concepts to be combined (and disadvantages of each separation management approach to be mitigated). Simulation studies are used to illustrate the potential benefits of the combined separation management concept.
Resumo:
The field of collaborative health planning faces significant challenges created by the narrow focus of the available information, the absence of a framework to organise that information and the lack of systems to make information accessible and guide decision-making. These challenges have been magnified by the rise of the ‘healthy communities movement’, as a result of which, there have been more frequent calls for localised, collaborative and evidence-driven health related decision-making. This paper discusses the role of decision support systems as a mechanism to facilitate collaborative health decision-making. The paper presents a potential information management framework to underpin a health decision support system and describes the participatory process that is currently being used to create an online tool for health planners using geographic information systems. The need for a comprehensive information management framework to guide the process of planning for healthy communities has been emphasised. The paper also underlines the critical importance of the proposed framework not only in forcing planners to engage with the entire range of health determinants, but also in providing sufficient flexibility to allow exploration of the local setting-based determinants of health.
Resumo:
Offering service bundles to the market is a promising option for service providers to strengthen their competitive advantages, cope with dynamic market conditions and deal with heterogeneous consumer demand. Although the expected positive effects of bundling strategies and pricing considerations for bundles are covered well by the available literature, limited guidance can be found regarding the identification of potential bundle candidates and the actual process of bundling. The proposed research aims at filling this gap by offering a service bundling method complemented by a proof-of-concept prototype, which extends the existing knowledge base in the multidisciplinary research area of Information Systems and Service Science as well as providing an organisation with a structured approach for bundling services.
Resumo:
The field of collaborative health planning faces significant challenges posed by the lack of effective information, systems and a framework to organise that information. Such a framework is critical in order to make accessible and informed decisions for planning healthy cities. The challenges have been exaggerated by the rise of the healthy cities movement, as a result of which, there have been more frequent calls for localised, collaborative and evidence-based decision-making. Some studies suggest that the use of ICT-based tools in health planning may lead to: increased collaboration between stakeholder sand the community; improve the accuracy and quality of the decision making process; and, improve the availability of data and information for health decision-makers as well as health service planners. Research has justified the use of decision support systems (DSS) in planning for healthy cities as these systems have been found to improve the planning process. DSS are information communication technology (ICT) tools including geographic information systems (GIS) that provide the mechanisms to help decision-makers and related stake holders assess complex problems and solve these in a meaningful way. Consequently, it is now more possible than ever before to make use of ICT-based tools in health planning. However, knowledge about the nature and use of DSS within collaborative health planning is relatively limited. In particular, little research has been conducted in terms of evaluating the impact of adopting these tools upon stakeholders, policy-makers and decision-makers within the health planning field. This paper presents an integrated method that has been developed to facilitate an informed decision-making process to assist in the health planning process. Specifically, the paper describes the participatory process that has been adopted to develop an online GIS-based DSS for health planners. The literature states that the overall aim of DSS is to improve the efficiency of the decisions made by stakeholders, optimising their overall performance and minimizing judgmental biases. For this reason, the paper examines the effectiveness and impact of an innovative online GIS-based DSS on health planners. The case study of the online DSS is set within a unique settings-based initiative designed to plan for and improve the health capacity of Logan-Beaudesert area, Australia. This unique setting-based initiative is named the Logan-Beaudesert Health Coalition (LBHC).The paper outlines the impact occurred by implementing the ICT-based DSS. In conclusion, the paper emphasizes upon the need for the proposed tool for enhancing health planning.
Resumo:
Countless factors affect the inner workings of a city, so in an attempt to gain an understanding of place and making sound decisions, planners need to utilize decision support systems (DSS) or planning support systems (PSS). PSS were originally developed as DSS in academia for experimental purposes, but like many other technologies, they became one of the most innovative technologies in parallel to rapid developments in software engineering as well as developments and advances in networks and hardware. Particularly, in the last decade, the awareness of PSS have been dramatically heightened with the increasing demand for a better, more reliable and furthermore a transparent decision-making process (Klosterman, Siebert, Hoque, Kim, & Parveen, 2003). Urban planning as an act has quite different perspective from the PSS point of view. The unique nature of planning requires that spatial dimension must be considered within the context of PSS. Additionally, the rapid changes in socio-economic structure cannot be easily monitored or controlled without an effective PSS.
Resumo:
Process-aware information systems, ranging from generic workflow systems to dedicated enterprise information systems, use work-lists to offer so-called work items to users. In real scenarios, users can be confronted with a very large number of work items that stem from multiple cases of different processes. In this jungle of work items, users may find it hard to choose the right item to work on next. The system cannot autonomously decide which is the right work item, since the decision is also dependent on conditions that are somehow outside the system. For instance, what is “best” for an organisation should be mediated with what is “best” for its employees. Current work-list handlers show work items as a simple sorted list and therefore do not provide much decision support for choosing the right work item. Since the work-list handler is the dominant interface between the system and its users, it is worthwhile to provide an intuitive graphical interface that uses contextual information about work items and users to provide suggestions about prioritisation of work items. This paper uses the so-called map metaphor to visualise work items and resources (e.g., users) in a sophisticated manner. Moreover, based on distance notions, the work-list handler can suggest the next work item by considering different perspectives. For example, urgent work items of a type that suits the user may be highlighted. The underlying map and distance notions may be of a geographical nature (e.g., a map of a city or office building), but may also be based on process designs, organisational structures, social networks, due dates, calendars, etc. The framework proposed in this paper is generic and can be applied to any process-aware information system. Moreover, in order to show its practical feasibility, the paper discusses a full-fledged implementation developed in the context of the open-source workflow environment YAWL, together with two real examples stemming from two very different scenarios. The results of an initial usability evaluation of the implementation are also presented, which provide a first indication of the validity of the approach.
Resumo:
Broad, early definitions of sustainable development have caused confusion and hesitation among local authorities and planning professionals. This confusion has arisen because loosely defined principles of sustainable development have been employed when setting policies and planning projects, and when gauging the efficiencies of these policies in the light of designated sustainability goals. The question of how this theory-rhetoric-practice gap can be filled is the main focus of this chapter. It examines the triple bottom line approach–one of the sustainability accounting approaches widely employed by governmental organisations–and the applicability of this approach to sustainable urban development. The chapter introduces the ‘Integrated Land Use and Transportation Indexing Model’ that incorporates triple bottom line considerations with environmental impact assessment techniques via a geographic, information systemsbased decision support system. This model helps decision-makers in selecting policy options according to their economic, environmental and social impacts. Its main purpose is to provide valuable knowledge about the spatial dimensions of sustainable development, and to provide fine detail outputs on the possible impacts of urban development proposals on sustainability levels. In order to embrace sustainable urban development policy considerations, the model is sensitive to the relationship between urban form, travel patterns and socio-economic attributes. Finally, the model is useful in picturing the holistic state of urban settings in terms of their sustainability levels, and in assessing the degree of compatibility of selected scenarios with the desired sustainable urban future.
Resumo:
Most of the national Health Information Systems (HIS) in resource limited developing countries do not serve the purpose of management support and thus the service is adversely affected. While emphasising the importance of timely and accurate health information in decision making in healthcare planning, this paper explains that Health Management Information System Failure is commonly seen in developing countries as well as the developed countries. It is suggested that the possibility of applying principles of Health Informatics and the technology of Decision Support Systems should be seriously considered to improve the situation. A brief scientific explanation of the evolution of these two disciplines is included.
Resumo:
Purpose – Rapid urbanisation, fragmented governance and recurrent flooding complicates resolution of DKI Jakarta’s chronic housing shortage. Failure to effectively implement planning decisionmaking processes poses potential human rights violations. Contemporary planning policy requires the relocation of households living in floodplains within fifteen metres of DKI Jakarta’s main watercourses; further constraining land availability and potentially requiring increased densification. The purpose of this paper is to re-frame planning decision-making to address risks of flooding and to increase community resilience. Design/methodology/approach – This paper presents a preliminary scoping study for a technologically enhanced participatory planning method, incorporating synthesis of existing information on urbanisation, governance, and flood risk management in Jakarta. Findings – Responsibility for flood risk management in DKI Jakarta is fragmented both within and across administrative boundaries. Decision-making is further complicated by: limited availability of land use data; uncertainty as to the delineated extent of watercourses, floodplains, and flood modelling; unclear risk and liability for infrastructure investments; and technical literacy of both public and government participants. Practical implications – This research provides information to facilitate consultation with government entities tasked with re-framing planning processes to increase public participation. Social implications – Reduction in risk exposure amongst DKI Jakarta’s most vulnerable populations addresses issues of social justice.
Resumo:
This chapter examines the challenges and opportunities associated with planning for competitive, smart and healthy cities. The chapter is based on the assumptions that a healthy city is an important prerequisite for a competitive city and a fundamental outcome of smart cities. Thus, it is preeminent to understand the planning decision support system based on local determinants of health, economic and social factors. One of the major decision support systems is e-health and this chapter will focus on the role of e-health planning, by utilising web-based geographic decision support systems. The proposed novel decision support system would provide a powerful and effective platform for stakeholders to access online information for a better decision-making while empowering community participation. The chapter also highlights the need for a comprehensive conceptual framework to guide the decision process of planning for healthy cities in association with opportunities and limitations. In summary, this chapter provides the critical insights of using information science-based framework and suggest online decision support methods, as part of a broader e-health approach for creating a healthy, competitive and smart city.