765 resultados para Plane strain compression
Resumo:
A multicore fibre (MCF) sensor to measure the radial deformation of a compliant cylinder under compression is presented. The sensor is connectorised and need not be permanently bonded to the test object. A differential measurement technique using FBGs written into the MCF makes the sensor temperature insensitive. FBG measurement of axial strain of a cylinder under compression is also reported.
Resumo:
A multicore fibre (MCF) sensor to measure the radial deformation of a compliant cylinder under compression is presented. The sensor is connectorised and need not be permanently bonded to the test object. A differential measurement technique using FBGs written into the MCF makes the sensor temperature insensitive. FBG measurement of axial strain of a cylinder under compression is also reported.
Resumo:
We present a comprehensive study based on first-principles calculations about the interplay of four important ingredients on the electronic structure of graphene: defects + magnetism + ripples + strain. So far they have not been taken into account simultaneously in a set of ab initio calculations. Furthermore, we focus on the strain dependence of the properties of carbon monovacancies, with special attention to magnetic spin moments. We demonstrated that such defects show a very rich structural and spin phase-diagram with many spin solutions as function of strain. At zero strain the vacancy shows a spin moment of 1.5 Bohrs that increases up to 2 Bohrs with stretching. Changes are more dramatic under compression: the vacancy becomes non-magnetic under a compression larger than 2%. This transition is linked to the structural modifications associated with the formation of ripples in the graphene layer. Our results suggest that such interplay could have important implications for the design of future spintronics devices based on graphene derivatives, as for example a spin-strain switch based on vacancies.
Resumo:
La vallée du fleuve Saint-Laurent, dans l’est du Canada, est l’une des régions sismiques les plus actives dans l’est de l’Amérique du Nord et est caractérisée par de nombreux tremblements de terre intraplaques. Après la rotation rigide de la plaque tectonique, l’ajustement isostatique glaciaire est de loin la plus grande source de signal géophysique dans l’est du Canada. Les déformations et les vitesses de déformation de la croûte terrestre de cette région ont été étudiées en utilisant plus de 14 ans d’observations (9 ans en moyenne) de 112 stations GPS fonctionnant en continu. Le champ de vitesse a été obtenu à partir de séries temporelles de coordonnées GPS quotidiennes nettoyées en appliquant un modèle combiné utilisant une pondération par moindres carrés. Les vitesses ont été estimées avec des modèles de bruit qui incluent les corrélations temporelles des séries temporelles des coordonnées tridimensionnelles. Le champ de vitesse horizontale montre la rotation antihoraire de la plaque nord-américaine avec une vitesse moyenne de 16,8±0,7 mm/an dans un modèle sans rotation nette (no-net-rotation) par rapport à l’ITRF2008. Le champ de vitesse verticale confirme un soulèvement dû à l’ajustement isostatique glaciaire partout dans l’est du Canada avec un taux maximal de 13,7±1,2 mm/an et un affaissement vers le sud, principalement au nord des États-Unis, avec un taux typique de −1 à −2 mm/an et un taux minimum de −2,7±1,4 mm/an. Le comportement du bruit des séries temporelles des coordonnées GPS tridimensionnelles a été analysé en utilisant une analyse spectrale et la méthode du maximum de vraisemblance pour tester cinq modèles de bruit: loi de puissance; bruit blanc; bruit blanc et bruit de scintillation; bruit blanc et marche aléatoire; bruit blanc, bruit de scintillation et marche aléatoire. Les résultats montrent que la combinaison bruit blanc et bruit de scintillation est le meilleur modèle pour décrire la partie stochastique des séries temporelles. Les amplitudes de tous les modèles de bruit sont plus faibles dans la direction nord et plus grandes dans la direction verticale. Les amplitudes du bruit blanc sont à peu près égales à travers la zone d’étude et sont donc surpassées, dans toutes les directions, par le bruit de scintillation et de marche aléatoire. Le modèle de bruit de scintillation augmente l’incertitude des vitesses estimées par un facteur de 5 à 38 par rapport au modèle de bruit blanc. Les vitesses estimées de tous les modèles de bruit sont statistiquement cohérentes. Les paramètres estimés du pôle eulérien de rotation pour cette région sont légèrement, mais significativement, différents de la rotation globale de la plaque nord-américaine. Cette différence reflète potentiellement les contraintes locales dans cette région sismique et les contraintes causées par la différence des vitesses intraplaques entre les deux rives du fleuve Saint-Laurent. La déformation de la croûte terrestre de la région a été étudiée en utilisant la méthode de collocation par moindres carrés. Les vitesses horizontales interpolées montrent un mouvement cohérent spatialement: soit un mouvement radial vers l’extérieur pour les centres de soulèvement maximal au nord et un mouvement radial vers l’intérieur pour les centres d’affaissement maximal au sud, avec une vitesse typique de 1 à 1,6±0,4 mm/an. Cependant, ce modèle devient plus complexe près des marges des anciennes zones glaciaires. Basées selon leurs directions, les vitesses horizontales intraplaques peuvent être divisées en trois zones distinctes. Cela confirme les conclusions d’autres chercheurs sur l’existence de trois dômes de glace dans la région d’étude avant le dernier maximum glaciaire. Une corrélation spatiale est observée entre les zones de vitesses horizontales intraplaques de magnitude plus élevée et les zones sismiques le long du fleuve Saint-Laurent. Les vitesses verticales ont ensuite été interpolées pour modéliser la déformation verticale. Le modèle montre un taux de soulèvement maximal de 15,6 mm/an au sud-est de la baie d’Hudson et un taux d’affaissement typique de 1 à 2 mm/an au sud, principalement dans le nord des États-Unis. Le long du fleuve Saint-Laurent, les mouvements horizontaux et verticaux sont cohérents spatialement. Il y a un déplacement vers le sud-est d’une magnitude d’environ 1,3 mm/an et un soulèvement moyen de 3,1 mm/an par rapport à la plaque l’Amérique du Nord. Le taux de déformation verticale est d’environ 2,4 fois plus grand que le taux de déformation horizontale intraplaque. Les résultats de l’analyse de déformation montrent l’état actuel de déformation dans l’est du Canada sous la forme d’une expansion dans la partie nord (la zone se soulève) et d’une compression dans la partie sud (la zone s’affaisse). Les taux de rotation sont en moyenne de 0,011°/Ma. Nous avons observé une compression NNO-SSE avec un taux de 3.6 à 8.1 nstrain/an dans la zone sismique du Bas-Saint-Laurent. Dans la zone sismique de Charlevoix, une expansion avec un taux de 3,0 à 7,1 nstrain/an est orientée ENE-OSO. Dans la zone sismique de l’Ouest du Québec, la déformation a un mécanisme de cisaillement avec un taux de compression de 1,0 à 5,1 nstrain/an et un taux d’expansion de 1.6 à 4.1 nstrain/an. Ces mesures sont conformes, au premier ordre, avec les modèles d’ajustement isostatique glaciaire et avec la contrainte de compression horizontale maximale du projet World Stress Map, obtenue à partir de la théorie des mécanismes focaux (focal mechanism method).
Resumo:
Behavior of granular material subjected to repeated load triaxial compression tests is characterized by a model based on rate process theory. Starting with the Arrhenius equation from chemical kinetics, the relationship of temperature, shear stress, normal stress and volume change to deformation rate is developed. The proposed model equation includes these factors as a product of exponential terms. An empirical relationship between deformation and the cube root of the number of stress applications at constant temperature and normal stress is combined with the rate equation to yield an integrated relationship of temperature, deviator stress, confining pressure and number of deviator stress applications to axial strain. The experimental program consists of 64 repeated load triaxial compression tests, 52 on untreated crushed stone and 12 on the same crushed stone material treated with 4% asphalt cement. Results were analyzed with multiple linear regression techniques and show substantial agreement with the model equations. Experimental results fit the rate equation somewhat better than the integrated equation when all variable quantities are considered. The coefficient of shear temperature gives the activation enthalpy, which is about 4.7 kilocalories/mole for untreated material and 39.4 kilocalories/mole for asphalt-treated material. This indicates the activation enthalpy is about that of the pore fluid. The proportionality coefficient of deviator stress may be used to measure flow unit volume. The volumes thus determined for untreated and asphalt-treated material are not substantially different. This may be coincidental since comparison with flow unit volumes reported by others indicates flow unit volume is related to gradation of untreated material. The flow unit volume of asphalt-treated material may relate to asphalt cement content. The proposed model equations provide a more rational basis for further studies of factors affecting deformation of granular materials under stress similar to that in pavement subjected to transient traffic loads.
Resumo:
Background: The use of artificial endoprostheses has become a routine procedure for knee and hip joints while ankle arthritis has traditionally been treated by means of arthrodesis. Due to its advantages, the implantation of endoprostheses is constantly increasing. While finite element analyses (FEA) of strain-adaptive bone remodelling have been carried out for the hip joint in previous studies, to our knowledge there are no investigations that have considered remodelling processes of the ankle joint. In order to evaluate and optimise new generation implants of the ankle joint, as well as to gain additional knowledge regarding the biomechanics, strain-adaptive bone remodelling has been calculated separately for the tibia and the talus after providing them with an implant. Methods: FE models of the bone-implant assembly for both the tibia and the talus have been developed. Bone characteristics such as the density distribution have been applied corresponding to CT scans. A force of 5,200 N, which corresponds to the compression force during normal walking of a person with a weight of 100 kg according to Stauffer et al., has been used in the simulation. The bone adaptation law, previously developed by our research team, has been used for the calculation of the remodelling processes. Results: A total bone mass loss of 2% in the tibia and 13% in the talus was calculated. The greater decline of density in the talus is due to its smaller size compared to the relatively large implant dimensions causing remodelling processes in the whole bone tissue. In the tibia, bone remodelling processes are only calculated in areas adjacent to the implant. Thus, a smaller bone mass loss than in the talus can be expected. There is a high agreement between the simulation results in the distal tibia and the literature regarding. Conclusions: In this study, strain-adaptive bone remodelling processes are simulated using the FE method. The results contribute to a better understanding of the biomechanical behaviour of the ankle joint and hence are useful for the optimisation of the implant geometry in the future.
Resumo:
The aim of this project was to investigate very small strain elastic behaviour of soils under unsaturated conditions, using bender/extender element (BEE) testing. The behaviour of soils at very small strains has been widely studied under saturated conditions, whereas much less work has been performed on very small strain behaviour under unsaturated conditions. A suction-controlled double wall triaxial apparatus for unsaturated soil testing was modified to incorporate three pairs of BEEs transmitting both shear and compression waves with vertical and horizontal directions of wave transmission and wave polarisation. Various different techniques for measuring wave travel time were investigated in both the time domain and the frequency domain and it was concluded that, at least for the current experimental testing programme, peak-to-first-peak in the time domain was the most reliable technique for determining wave travel time. An experimental test programme was performed on samples of compacted speswhite kaolin clay. Two different forms of compaction were employed (i.e. isotropic and anisotropic). Compacted kaolin soil samples were subjected to constant suction loading and unloading stages at three different values of suction, covering both unsaturated conditions (s= 50kPa and s= 300kPa) and saturated conditions (s=0). Loading and unloading stages were performed at three different values of stress ratio (η=0, η=1 and η=-1 ). In some tests a wetting-drying cycle was performed before or within the loading stage, with the wetting-drying cycles including both wetting-induced swelling and wetting-induced collapse compression. BEE tests were performed at regular intervals throughout all test stages, to measure shear wave velocity Vs and compression wave velocity Vp and hence to determine values of shear modulus G and constrained modulus M. The experimental test programme was designed to investigate how very small strain shear modulus G and constrained modulus M varied with unsaturated state variables, including how anisotropy of these parameters developed either with stress state (stress-induced anisotropy) or with previous straining (strain-induced anisotropy). A new expression has been proposed for the very small strain shear modulus G of an isotropic soil under saturated and unsaturated conditions. This expression relates the variation of G to only mean Bishop’s stress p* and specific volume v, and it converges to a well-established expression for saturated soils as degree of saturation approaches 1. The proposed expression for G is able to predict the variation of G under saturated and unsaturated conditions at least as well as existing expressions from the literature and it is considerably simpler (employing fewer state variables and fewer soil constants). In addition, unlike existing expressions from the literature, the values of soil constants in the proposed new expression can be determined from a saturated test. It appeared that, in the current project at least, any strain-induced anisotropy of very small strain elastic behaviour was relatively modest, with the possible exception of loading in triaxial extension. It was therefore difficult to draw any firm conclusion about evolution of strain-induced anisotropy and whether it depended upon the same aspects of soil fabric as evolution of anisotropy of large strain plastic behaviour. Stress-induced anisotropy of very small strain elastic behaviour was apparent in the experimental test programme. An attempt was made to extend the proposed expression for G to include the effect of stress-induced anisotropy. Interpretation of the experimental results indicated that the value of shear modulus was affected by the values of all three principal Bishop’s stresses (in the direction of wave transmission, the direction of wave polarisation and the third mutually perpendicular direction). However, prediction of stress-induced anisotropy was only partially successful, and it was concluded that the effect of Lode angle was also significant.
Resumo:
International audience
Resumo:
Due to their intriguing dielectric, pyroelectric, elasto-electric, or opto-electric properties, oxide ferroelectrics are vital candidates for the fabrication of most electronics. However, these extraordinary properties exist mainly in the temperature regime around the ferroelectric phase transition, which is usually several hundreds of K away from room temperature. Therefore, the manipulation of oxide ferroelectrics, especially moving the ferroelectric transition towards room temperature, is of great interest for application and also basic research. In this thesis, we demonstrate this using examples of NaNbO3 films. We show that the transition temperature of these films can be modified via plastic strain caused by epitaxial film growth on a structurally mismatched substrate, and this strain can be fixed by controlling the stoichiometry. The structural and electronic properties of Na1+xNbO3+δ thin films are carefully examined by among others XRD (e.g. RSM) and TEM and cryoelectronic measurements. Especially the electronic features are carefully analyzed via specially developed interdigitated electrodes in combination with integrated temperature sensor and heater. The electronic data are interpreted using existing as well as novel theories and models, they are proved to be closely correlated to the structural characteristics. The major results are: -Na1+xNbO3+δ thin films can be grown epitaxially on (110)NdGaO3 with a thickness up to 140 nm (thicker films have not been studied). Plastic relaxation of the compressive strain sets in when the thickness of the film exceeds approximately 10 – 15 nm. Films with excess Na are mainly composed of NaNbO3 with minor contribution of Na3NbO4. The latter phase seems to form nanoprecipitates that are homogeneously distributed in the NaNbO3 film which helps to stabilize the film and reduce the relaxation of the strain. -For the nominally stoichiometric films, the compressive strain leads to a broad and frequency-dispersive phase transition at lower temperature (125 – 147 K). This could be either a new transition or a shift in temperature of a known transition. Considering the broadness and frequency dispersion of the transition, this is actually a transition from the dielectric state at high temperature to a relaxor-type ferroelectric state at low temperature. The latter is based on the formation of polar nano-regions (PNRs). Using the electric field dependence of the freezing temperature, allows a direct estimation of the volume (70 to 270 nm3) and diameter (5.2 to 8 nm, spherical approximation) of the PNRs. The values confirm with literature values which were measured by other technologies. -In case of the off-stoichiometric samples, we observe again the classical ferroelectric behavior. However, the thermally hysteretic phase transition which is observed around 620 – 660 K for unstrained material is shifted to room temperature due to the compressive strain. Beside to the temperature shift, the temperature dependence of the permittivity is nearly identical for strained and unstrained materials. -The last but not least, in all cases, a significant anisotropy in the electronic and structural properties is observed which arises automatically from the anisotropic strain caused by the orthorhombic structure of the substrate. However, this anisotropy cannot be explained by the classical model which tries to fit an orthorhombic film onto an orthorhombic substrate. A novel “square lattice” model in which the films adapt a “square” shaped lattice in the plane of the film during the epitaxial growth at elevated temperature (~1000 K) nicely explains the experimental results. In this thesis we sketch a way to manipulate the ferroelectricity of NaNbO3 films via strain and stoichiometry. The results indicate that compressive strain which is generated by the epitaxial growth of the film on mismatched substrate is able to reduce the ferroelectric transition temperature or induce a phase transition at low temperature. Moreover, by adding Na in the NaNbO3 film a secondary phase Na3NbO4 is formed which seems to stabilize the main phase NaNbO3 and the strain and, thus, is able to engineer the ferroelectric behavior from the expected classical ferroelectric for perfect stoichiometry to relaxor-type ferroelectric for slightly off-stoichiometry, back to classical ferroelectric for larger off-stoichiometry. Both strain and stoichiometry are proven as perfect methods to optimize the ferroelectric properties of oxide films.
Resumo:
A finite-strain solid–shell element is proposed. It is based on least-squares in-plane assumed strains, assumed natural transverse shear and normal strains. The singular value decomposition (SVD) is used to define local (integration-point) orthogonal frames-of-reference solely from the Jacobian matrix. The complete finite-strain formulation is derived and tested. Assumed strains obtained from least-squares fitting are an alternative to the enhanced-assumed-strain (EAS) formulations and, in contrast with these, the result is an element satisfying the Patch test. There are no additional degrees-of-freedom, as it is the case with the enhanced-assumed-strain case, even by means of static condensation. Least-squares fitting produces invariant finite strain elements which are shear-locking free and amenable to be incorporated in large-scale codes. With that goal, we use automatically generated code produced by AceGen and Mathematica. All benchmarks show excellent results, similar to the best available shell and hybrid solid elements with significantly lower computational cost.
Resumo:
A finite-strain solid–shell element is proposed. It is based on least-squares in-plane assumed strains, assumed natural transverse shear and normal strains. The singular value decomposition (SVD) is used to define local (integration-point) orthogonal frames-of- reference solely from the Jacobian matrix. The complete finite-strain formulation is derived and tested. Assumed strains obtained from least-squares fitting are an alternative to the enhanced-assumed-strain (EAS) formulations and, in contrast with these, the result is an element satisfying the Patch test. There are no additional degrees-of-freedom, as it is the case with the enhanced- assumed-strain case, even by means of static condensation. Least-squares fitting produces invariant finite strain elements which are shear-locking free and amenable to be incorporated in large-scale codes. With that goal, we use automatically generated code produced by AceGen and Mathematica. All benchmarks show excellent results, similar to the best available shell and hybrid solid elements with significantly lower computational cost.
Resumo:
A new semi-implicit stress integration algorithm for finite strain plasticity (compatible with hyperelas- ticity) is introduced. Its most distinctive feature is the use of different parameterizations of equilibrium and reference configurations. Rotation terms (nonlinear trigonometric functions) are integrated explicitly and correspond to a change in the reference configuration. In contrast, relative Green–Lagrange strains (which are quadratic in terms of displacements) represent the equilibrium configuration implicitly. In addition, the adequacy of several objective stress rates in the semi-implicit context is studied. We para- metrize both reference and equilibrium configurations, in contrast with the so-called objective stress integration algorithms which use coinciding configurations. A single constitutive framework provides quantities needed by common discretization schemes. This is computationally convenient and robust, as all elements only need to provide pre-established quantities irrespectively of the constitutive model. In this work, mixed strain/stress control is used, as well as our smoothing algorithm for the complemen- tarity condition. Exceptional time-step robustness is achieved in elasto-plastic problems: often fewer than one-tenth of the typical number of time increments can be used with a quantifiable effect in accuracy. The proposed algorithm is general: all hyperelastic models and all classical elasto-plastic models can be employed. Plane-stress, Shell and 3D examples are used to illustrate the new algorithm. Both isotropic and anisotropic behavior is presented in elasto-plastic and hyperelastic examples.
Resumo:
Two novelties are introduced: (i) a finite-strain semi-implicit integration algorithm compatible with current element technologies and (ii) the application to assumed-strain hexahedra. The Löwdin algo- rithm is adopted to obtain evolving frames applicable to finite strain anisotropy and a weighted least- squares algorithm is used to determine the mixed strain. Löwdin frames are very convenient to model anisotropic materials. Weighted least-squares circumvent the use of internal degrees-of-freedom. Het- erogeneity of element technologies introduce apparently incompatible constitutive requirements. Assumed-strain and enhanced strain elements can be either formulated in terms of the deformation gradient or the Green–Lagrange strain, many of the high-performance shell formulations are corotational and constitutive constraints (such as incompressibility, plane stress and zero normal stress in shells) also depend on specific element formulations. We propose a unified integration algorithm compatible with possibly all element technologies. To assess its validity, a least-squares based hexahedral element is implemented and tested in depth. Basic linear problems as well as 5 finite-strain examples are inspected for correctness and competitive accuracy.
Resumo:
The actinobacterium Streptomyces wadayamensis A23 is an endophyte of Citrus reticulata that produces the antimycin and mannopeptimycin antibiotics, among others. The strain has the capability to inhibit Xylella fastidiosa growth. The draft genome of S. wadayamensis A23 has ~7.0 Mb and 6,006 protein-coding sequences, with a 73.5% G+C content.
Resumo:
A Bacillus cereus strain, FT9, isolated from a hot spring in the midwest region of Brazil, had its entire genome sequenced.