939 resultados para Planar Formal Power Series


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We describe high-power planar waveguide laser which can achieve single-mode output from a multi-mode structure. The planar waveguide is constructed with incomplete self-imaging properties, by which the coupling loss of each guided mode can be discriminated. Thermal lens effects are evaluated for single-mode operation of such high-power diode-pumped solid-state lasers. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thermal effects in Nd:YAG planar waveguide lasers with non-symmetrical claddings are discussed. The heat generated in the active core can be removed more efficiently by directly contacting the active core to the heat sink. Several cladding materials are compared to optimize the heat removal. Furthermore, uniform pumping is achieved with oblique edge-pumping technique. Using quasi-CW pumping at 1 KHz repetition rate, an average output power of 280 W with a slope efficiency of 38% is obtained with a positive unstable resonator. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new thermal model based on Fourier series expansion method has been presented for dynamic thermal analysis on power devices. The thermal model based on the Fourier series method has been programmed in MATLAB SIMULINK and integrated with a physics-based electrical model previously reported. The model was verified for accuracy using a two-dimensional Fourier model and a two-dimensional finite difference model for comparison. To validate this thermal model, experiments using a 600V 50A IGBT module switching an inductive load, has been completed under high frequency operation. The result of the thermal measurement shows an excellent match with the simulated temperature variations and temperature time-response within the power module. ©2008 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An analysis of a modified series-L/parallel-tuned Class-E power amplifier is presented, which includes the effects that a shunt capacitance placed across the switching device will have on Class-E behaviour. In the original series L/parallel-tuned topology in which the output transistor capacitance is not inherently included in the circuit, zero-current switching (ZCS) and zero-current derivative switching (ZCDS) conditions should be applied to obtain optimum Class-E operation. On the other hand, when the output transistor capacitance is incorporated in the circuit, i.e. in the modified series-L/parallel-tuned topology, the ZCS and ZCDS would not give optimum operation and therefore zero-voltage-switching (ZVS) and zero-voltage-derivative switching (ZVDS) conditions should be applied instead. In the modified series-L/parallel-tuned Class-E configuration, the output-device inductance and the output-device output capacitance, both of which can significantly affect the amplifier's performance at microwave frequencies, furnish part, if not all, of the series inductance L and the shunt capacitance COUT, respectively. Further, when compared with the classic shunt-C/series-tuned topology, the proposed Class-E configuration offers some advantages in terms of 44% higher maximum operating frequency (fMAX) and 4% higher power-output capability (PMAX). As in the classic topology, the fMAX of the proposed amplifier circuit is reached when the output-device output capacitance furnishes all of the capacitance COUT, for a given combination of frequency, output power and DC supply voltage. It is also shown that numerical simulations agree well with theoretical predictions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An analysis of the operation of a series-L/parallel-tuned class-E amplifier and its equivalence to the classic shunt-C/series-tuned class-E amplifier are presented. The first reported closed form design equations for the series-L/parallel-tuned topology operating under ideal switching conditions are given. Furthermore, a design procedure is introduced that allows the effect that nonzero switch resistance has on amplifier performance efficiency to be accounted for. The technique developed allows optimal circuit components to be found for a given device series resistance. For a relatively high value of switching device ON series resistance of 4O, drain efficiency of around 66% for the series-L/parallel-tuned topology, and 73% for the shunt-C/series-tuned topology appear to be the theoretical limits. At lower switching device series resistance levels, the efficiency performance of each type are similar, but the series-L/parallel-tuned topology offers some advantages in terms of its potential for MMIC realisation. Theoretical analysis is confirmed by numerical simulation for a 500mW (27dBm), 10% bandwidth, 5 V series-L/parallel-tuned, then, shunt-C/series-tuned class E power amplifier, operating at 2.5 GHz, and excellent agreement between theory and simulation results is achieved. The theoretical work presented in the paper should facilitate the design of high-efficiency switched amplifiers at frequencies commensurate with the needs of modern mobile wireless applications in the microwave frequency range, where intrinsically low-output-capacitance MMIC switching devices such as pHEMTs are to be used.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we investigate the influence of a power-law noise model, also called noise, on the performance of a feed-forward neural network used to predict time series. We introduce an optimization procedure that optimizes the parameters the neural networks by maximizing the likelihood function based on the power-law model. We show that our optimization procedure minimizes the mean squared leading to an optimal prediction. Further, we present numerical results applying method to time series from the logistic map and the annual number of sunspots demonstrate that a power-law noise model gives better results than a Gaussian model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The applicability of ultra-short-term wind power prediction (USTWPP) models is reviewed. The USTWPP method proposed extracts featrues from historical data of wind power time series (WPTS), and classifies every short WPTS into one of several different subsets well defined by stationary patterns. All the WPTS that cannot match any one of the stationary patterns are sorted into the subset of nonstationary pattern. Every above WPTS subset needs a USTWPP model specially optimized for it offline. For on-line application, the pattern of the last short WPTS is recognized, then the corresponding prediction model is called for USTWPP. The validity of the proposed method is verified by simulations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wireless communications are widely used for various applications, requiring antennas with different features. Often, to achieve the desired radiation pattern, is necessary to employ antenna arrays, using non-uniform excitation on its elements. Power dividers can be used and the best known are the T-junction and the Wilkinson power divider, whose main advantage is the isolation between output ports. In this paper the impact of this isolation on the overall performance of a circularly polarized planar antenna array using non-uniform excitation is investigated. Results show a huge decrease of the array bandwidths either in terms of return loss or in polarization, without resistors. © 2014 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gamma radiations measurements were carried out in the vicinity of a coal-fired power plant located in the southwest coastline of Portugal. Two different gamma detectors were used to assess the environmental radiation within a circular area of 20 km centred in the coal plant: a scintillometer (SPP2 NF, Saphymo) and a high purity germanium detector (HPGe, Canberra). Fifty urban and suburban measurements locations were established within the defined area and two measurements campaigns were carried out. The results of the total gamma radiation ranged from 20.83 to 98.33 counts per second (c.p.s.) for both measurement campaigns and outdoor doses rates ranged from 77.65 to 366.51 Gy/h. Natural emitting nuclides from the U-238 and Th-232 decay series were identified as well as the natural emitting nuclide K-40. The radionuclide concentration from the uranium and thorium series determined by gamma spectrometry ranged from 0.93 to 73.68 Bq/kg, while for K-40 the concentration ranged from 84.14 to 904.38 Bq/kg. The obtained results were used primarily to define the variability in measured environmental radiation and to determine the coal plant’s influence in the measured radiation levels. The highest values were measured at two locations near the power plant and at locations between the distance of 6 and 20 km away from the stacks, mainly in the prevailing wind direction. The results showed an increase or at least an influence from the coal-fired plant operations, both qualitatively and quantitatively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This chapter examines the extent to which Britain's status as a global power in the twentieth century was underpinned by the existence of its empire. It suggests that, in a military sense, empire represented an uncertain resource. While the mobilization of the empire in the two world wars was ultimately crucial to British victory, its latent power in the years leading to those conflicts was poorly appreciated, not least by UK policy‐makers themselves. As such, it had limited value as a deterrent to Britain's enemies. Furthermore, the process of mobilizing the empire for war placed an almost intolerable strain on the fragile structures of imperial control. Britain's continuing aspirations to play the role of a global power following post‐war decolonization reflect the extent to which its overseas interests had always transcended the formal boundaries of empire. Meanwhile the Anglo‐American alliance provided Britain with a degree of security that its empire had never offered.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Energy policies and technological progress in the development of wind turbines have made wind power the fastest growing renewable power source worldwide. The inherent variability of this resource requires special attention when analyzing the impacts of high penetration on the distribution network. A time-series steady-state analysis is proposed that assesses technical issues such as energy export, losses, and short-circuit levels. A multiobjective programming approach based on the nondominated sorting genetic algorithm (NSGA) is applied in order to find configurations that maximize the integration of distributed wind power generation (DWPG) while satisfying voltage and thermal limits. The approach has been applied to a medium voltage distribution network considering hourly demand and wind profiles for part of the U.K. The Pareto optimal solutions obtained highlight the drawbacks of using a single demand and generation scenario, and indicate the importance of appropriate substation voltage settings for maximizing the connection of MPG.