965 resultados para Pin
Resumo:
La Enfermedad Renal Crónica (ERC) se define como la disminución de la función renal, donde se reduce el filtrado glomerular (FG) estimado < 60 ml/min/1,73m2 o como la presencia de daño renal de forma persistente durante al menos tres meses. La enfermedad renal crónica (ERC) es una patología progresiva que afecta cada vez más a la población, el daño renal aumenta con el paso del tiempo, siendo su resultado el tratamiento renal sustitutivo, trasplante o incluso la muerte, el gran problema es que en ocasiones no hay síntomas hasta que esta instaurada. Las causas de la ERC son complejas e incluyen enfermedades comunes, como la hipertensión, el síndrome metabólico (conjunto de varios factores como HTA, obesidad), la diabetes y otras patologías que afectan al riñón. Desde la clasificación de ERC en 5 fases, los clínicos pueden diagnosticar precozmente, incluso en estadios iniciales. Para frenar la progresión de la enfermedad es recomendable la disminución de ingesta de proteica. El objetivo de este estudio es evaluar una intervención nutricional (PIN) sobre la función renal, valorando la ingesta, vigilando el estado renal y nutricional en pacientes con enfermedad renal crónica sin tratamiento sustitutorio. Se siguieron los criterios de las quías KDIGO/KDOQI, y los diferentes Documentos de Consenso de las Sociedades Científicas. Se diseñó un estudio longitudinal aleatorizado de 86 participantes, de los 43 que componían el grupo estudio (E) finalizaron el programa de intervención nutricional 90,69% de la muestra inicial, y 38 de los participantes del grupo control (C) (88,37%). La duración del ensayo fue de 12 meses. El estado nutricional se evaluó mediante la valoración global subjetiva (VSG), datos antropométricos, dietéticos y analíticos. Se realizó los análisis estadísticos con el programa SPSS. A los doce meses, se ha observado un aumento de FG y una disminución de otros parámetros que agravan la enfermedad. Además, se ha producido un control de la ingesta proteica y de la ingesta energética. Conclusión: Mediante una intervención nutricional mantenida en el tiempo, se puede controlar el estado nutricional y se evita la progresión de la enfermedad renal, influyendo positivamente en algunos parámetros de riesgo. Por lo que podemos concluir que la utilización de programas de intervención nutricional (PIN) en las consultas de enfermería nefrológica para pacientes con enfermedad renal crónica, podría evitar, en ocasiones, el paso del paciente a diálisis, trasplante o a la muerte.
Resumo:
In recent years, agronomical researchers began to cultivate several olive varieties in different regions of Brazil to produce virgin olive oil (VOO). Because there has been no reported data regarding the phenolic profile of the first Brazilian VOO, the aim of this work was to determine phenolic contents of these samples using rapid-resolution liquid chromatography coupled to electrospray ionisation time-of-flight mass spectrometry. 25 VOO samples from Arbequina, Koroneiki, Arbosana, Grappolo, Manzanilla, Coratina, Frantoio and MGS Mariense varieties from three different Brazilian states and two crops were analysed. It was possible to quantify 19 phenolic compounds belonging to different classes. The results indicated that Brazilian VOOs have high total phenolic content because the values were comparable with those from high-quality VOOs produced in other countries. VOOs from Coratina, Arbosana and Grappolo presented the highest total phenolic content. These data will be useful in the development and improvement of Brazilian VOO.
Resumo:
The hygienic behavior of honey bees is based on a two-step process, including uncapping and removing diseased, dead, damaged, or parasitized brood inside the cell. We evaluated during periods of 1 h the time that hygienic and non-hygienic colonies of Africanized honey bees spend to detect, uncap and remove pin-killed brood using comb inserts with transparent walls placed in observation hives. We observed that hygienic colonies are significantly faster in detecting, uncapping and removing dead brood in the cells (P < 0.001).
Resumo:
We examined the sequence, order or steps of hygienic behavior (HB) from pin-killed pupae until the removal of them by the bees. We conducted our study with four colonies of Apis mellifera carnica in Germany and made four repetitions. The pin-killing method was used for evaluation of the HB of bees. The data were collected every 2 h after perforation, totaling 13 observations. Additionally, for one hygienic colony and another non-hygienic colony, individual analyses of each dead pupa were made at every observation, including all details, steps or sequences of HB. The bees recognize the cells containing dead pupae within 2 h after perforation, initially making a hole in the capping, which is the beginning of HB. Uncapping of the dead brood cell reached maximum values from 4 to 6 h after perforation; after 24 h, practically all cells were already uncapped. Another variable, called brood partially removed, was analyzed 4 h after perforation, after the cells had been perforated, which involved uncapping, followed by partial or total removal of the brood. Maximum values of brood partially removed were found 10 h after perforation, though such cells could be found up to 48 h after perforation. The most frequent sequence of events in both colonies was: capped cell -> punctured cell. brood partially removed -> empty cell. A new model of three pairs of recessive genes (uncapping u1, u2 and remover r) was proposed in order to explain the genetic control of the HB in Apis mellifera. We recommend evaluating HB 24 h after perforation and using a correction factor to compensate for control removal levels. We found a series of details of HB, which allow a study of how various factors may affect the sequence of the activities involved in HB and investigation of the genetics that controls this process.
Resumo:
In Apis mellifera, hygienic behavior involves recognition and removal of sick, damaged or dead brood from capped cells. We investigated whether bees react in the same way to grouped versus isolated damaged capped brood cells. Three colonies of wild-type Africanized honey bees and three colonies of Carniolan honey bees were used for this investigation. Capped worker brood cells aged 12 to 14 days old were perforated with the pin-killing method. After making holes in the brood cells, the combs were placed back into the hives; 24 h later the number of cleaned cells was recorded in areas with pin-killed and control brood cells. Four repetitions were made in each colony. Isolated cells were more frequently cleaned than grouped cells, though variance analysis showed no significant difference (P = 0.1421). Carniolan bees also were somewhat, though not significantly more hygienic than Africanized honey bees (P = 0.0840). We conclude that honey bees can detect and remove both isolated and grouped dead brood. The tendency towards greater hygienic efficiency directed towards grouped pin-killed brood may be a consequence of a greater concentration of volatiles emanating from the wounds in the dead pupae.
Resumo:
We investigated hygienic behavior in 10 colonies of Plebeia remota, using the pin-killed method. After 24 h the bees had removed a mean of 69.6% of the dead brood. After 48 h, the bees had removed a mean of 96.4% of the dead brood. No significant correlation was found between the size of the brood comb and the number of dead pupae removed, and there was no apparent effect of the origin and the condition of the colony on the hygienic behavior of the bees. Plebeia remota has an efficiency of hygienic behavior superior to that of three of the other four stingless bee species studied until now.
Resumo:
This study investigated the composition and antifungal activity against Cladosporium sphaerospermum and Cladosporium cladosporioides of essential oils of leaves of Piper cernuum, Piper diospyrifolium, Piper crassinervium, Piper solmsianum and Piper umbelata and fruits of P. cernuum and P. diospyrifolium. The essentials oils were analyzed by GC-MS and submitted of the antifungal activity tests. The essential oils of fruits from P. cernuum and leaves of P. crassinervium and P. solmsianum showed potential antifungal activity against C. sphaerospermum and C. cladosporioides. In addition, this is the first report of the composition of essential oils of fruits of P. cernuum and P. diospyrifolium.
Resumo:
The effects of different tempering temperatures (300-600 degrees C) on abrasive wear resistance of mottled cast iron were studied. Abrasive wear tests were carried out using the rubber-wheel test on quartz sand and the pin test on Al(2)O(3) abrasive cloths. The retained austenite content of the matrix was determined by X-ray diffraction. The wear surface of the specimens was examined by scanning electron microscopy for identifying the wear micromechanism. Bulk hardness and matrix hardness before and after the tests were measured. The results showed that in the two-body (pin-on-disc test) system, the main wear mechanism was microcutting and high matrix hardening was presented. The wear rates presented higher correlation with the retained austenite than with the bulk and matrix hardness. In the three-body system (sand-rubber wheel), the wear surfaces presented indentations due to abrasive rolling. The wear rates had better correlation with both the bulk and matrix hardness (before and after the wear test) than with the retained austenite content. There are two groups of results, high and low wear rates corresponding to each tribosystem, two-body abrasive wear and three-body abrasive wear, respectively. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Effects of particle abrasive sizes on wear resistance of mottled cast iron with different retained austenite contents were studied. Abrasive wear tests using a pin test on alumina paper were carried out, using abrasive sizes between 16 mu m and 192 mu m. Retained austenite content of the matrix was determined by X-ray diffraction. The wear surface of samples and the alumina paper were examined by scanning electron microscopy for identifying the wear micromechanism. The results show that at lower abrasive sizes the mass loss was similar for the iron with different austenite contents. However, at higher abrasive sizes the samples with higher retained austenite content presented higher abrasion resistance. For lower abrasive sizes tested, samples with higher and lower retained austenite content both presented microcutting. On the other hand, the main wear micromechanism for the samples with higher retained austenite content and higher abrasive sizes was microploughing. The samples with lower retained austenite content presented microcutting and wedge formation at higher abrasive sizes. Higher abrasive size induced more microcutting in samples with lower retained austenite. The iron with lower retained austenite content presented wider grooves for the different abrasive sizes measured. SEM on the abrasive paper used on samples with higher retained austenite showed continuous and discontinuous microchips and the samples with lower retained austenite showed discontinuous microchips at 66 and 141 mu m. This research demonstrates the relation between abrasive size, wear resistance, groove width and wear micromechanism for mottled cast iron with different retained austenite contents. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The abrasive wear resistance of white cast iron was studied. The iron was solidified using two solidification rates of 1.5 and 15 degrees C/s. Mass loss was evaluated with tests of the type pin on abrasive disc using alumina of different sizes. Two matrices were tested: one predominantly austenitic and the other predominantly martensitic, containing M(3)C carbides. Samples with cooling rate of 15 degrees C/s showed higher hardness and more refined microstructure compared with those solidified at 1.5 degrees C/s. During the test, the movement of successive abrasives gave rise to the strain hardening of the austenite phase, leading to the attainment of similar levels of surface hardness, which explains why the wear rate showed no difference compared to the austenite samples with different solidification rates. For the austenitic matrix the wear rate seems to depend on the hardness of the worn surface and not on the hardness of the material without deformation. The austenitic samples showed cracking and fracture of M(3)C carbides. For the predominantly martensitic matrix, the wear rate was higher at the solidification rate of 1.5 degrees C/s, for grain size of 66 and 93 mu m. Higher abrasive sizes were found to produce greater penetration and strain hardening of austenitic matrices. However, martensitic iron produces more microcutting, increasing the wear rate of the material. The analysis of the worn surface by scanning electron microscopy indicated abrasive wear mechanisms such as: microcutting, microfatigue and microploughing. Yet, for the iron of austenitic matrix, the microploughing mechanism was more severe. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper presents the results obtained in pin-on-disk test apparatus using glass and alumina as abrasive materials, showing the rates and mechanisms of abrasive wear of 1070 and 52100 steels, and ductile and white cast irons. The test conditions were selected in order to obtain wear rates that correspond to mild and severe abrasion, using different metal hardness-to-abrasive hardness ratios(H/H(A)) and 0.2 or 0.06 mm abrasive grains. The use of bulk Vickers hardness, instead of microhardness, allows a better description of the different abrasion regions. Under severe abrasion, the microcutting mechanism of wear prevailed together with friction coefficients larger than 0.4. On the other hand, when relatively soft abrasives are tested, indentation of abrasive particles followed by its fragmentation, and a creation of a thin deformed layer were the main damage mechanisms, with the friction coefficient lying below 0.4. The abrasive particle size under mild regime is able to change the wear rates in an order of magnitude. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In the unlubricated sliding wear of steels the mild-severe and severe-mild wear transitions have long been investigated. The effect of system inputs such as normal load, sliding speed, environment humidity and temperature, material properties, among others, on those transitions have also been studied. Although transitions seem to be caused by microstructural changes, surfaces oxidation and work-hardening, some questions remain regarding the way each aspect is involved. Since the early studies in sliding wear, it has usually been assumed that only the material properties of the softer body influence the wear behavior of contacting surfaces. For example, the Archard equation involves only the hardness of the softer body, without considering the hardness of the harder body. This work aims to discuss the importance of the harder body hardness in determining the wear regime operation. For this, pin-on-disk wear tests were carried out, in which the disk material was always harder than the pin material. Variations of the friction force and vertical displacement of the pin were registered during the tests. A material characterization before and after tests was conducted using stereoscopy and scanning electron microscopy (SEM) methods, in addition to mass loss, surface roughness and microhardness measurements. The wear results confirmed the occurrence of a mild-severe wear transition when the disk hardness was decreased. The disk hardness to pin hardness ratio (H(d)/H(p)) was used as a criterion to establish the nature of surface contact deformation and to determine the wear regime transition. A predominantly elastic or plastic contact, characterized by H(d)/H(p) values higher or lower than one, results in a mild or severe wear regime operation, respectively. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this study four irons were casted with different chromium and vanadium contents: 2.66% Cr, 5.01% Cr, 2.51% V and 5.19% V. Their microstructure is composed of: ledeburite, graphite and M(3)C carbides (cementite). Pin-abrasion tests were carried out using fixed alumina abrasive grains at different loads: 1, 2, 4.6 and 10 N. The wear surface and the abrasive paper were examined by scanning electron microscopy for identifying the wear micromechanism. The results reveal that the mass loss increased with the load increase, and the effect of the percentage of chromium on mass loss is inverted when the load is increased from 4.6 to 10 N; for 4.6 N the mass loss decreased when the chromium percentage was increased from 2.66% to 5.01%. Nevertheless, for 10 N the mass loss increased when the chromium percentage was increased. The worn surfaces of the materials tested at 1 N show microcutting caused by the abrasive tip that produces continuous microchips. The worn surfaces and the abrasive paper tested at 10 N show continuous microchips and brittle debris. The results show that high pressures produce a brittle wear mechanism and low pressures produce a more ductile wear micromechanism, for this, the applied pressure defines the dependence between the wear resistance and wear micromechanism. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Coaracy Nunes was the first hydroelectric power plant in the Amazon region, being located in Araguari River, Amapa State, Brazil. The plant operates since 1976, presenting now a nominal capacity of 78 MW. The shear pins, which are installed in the turbine hydraulic arms to control the wicket gate and regulate the water flow into the turbine blades, suffered several breakdowns since 2004. These shear pins are made of an ASTM 410 stainless steel and were designed to break by a shear overload of 120 kN. Fractographic investigation of the pins, however, revealed two types of fracture topographies: a region of stable crack propagation area, with non-pronounced striation and secondary cracks; and a region of unstable propagation, featuring elongated dimples. These results indicated that the stable crack propagation occurred by fatigue (bidirectional bending), which was nucleated at machining marks under high nominal load. Finite element analysis was carried out using two loading conditions (pure shear and a combination of shear and bending) and the results indicated that the presence of a bending stress strongly increased the stress concentration factor (85% rise in the shear stress and 130% rise in the Von Mises stress). Misalignment during shear pins assembly associated with vibration might have promoted the premature failure of the shear by bending fatigue. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Detailed view of poles used in construction. Poles were spliced in their length with steel bars (like 3 pin plugs) and these joints were restrained from splitting with steel strap belts. The belts were tightened with opposing wedges like the old Greene & Greene wrought iron detail.