951 resultados para Pilot-scale


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sustainability is becoming increasingly important in the mining and mineral processing industries and must incorporate the associated waste products. Acid mine drainage (AMD) is one such by-product and is one of the most serious environmental problems facing the minerals industry today. The oxidation of sulphidic mine wastes often continues for a substantial period of time after mine closure, resulting in difficult and costly remediation and rehabilitation works. Mining companies are often reluctant to spend increasing amounts of money on waste treatment when the mine life is limited or even finished. Hence a simple, low maintenance and low-cost method of treating AMD is required. Whilst this paper does not address the issue of AMD, it does propose methods for removal of individual species from AMD with potential benefits, including raising AMD pH.

A novel concept of using biosolids as a biological adsorbent, or ‘biosorbent’, of metals from AMD is being investigated at a laboratory/pilot scale level. Biosolids are a by-product resulting from the biological treatment of wastewater, and have been previously shown to adsorb metals from aqueous solutions. This could lead to an environmentally sustainable or ‘green’ method for treating both AMD discharges and disposing/reusing the biosolids.

The result of a laboratory-scale study of the biosorption of Zn(II) is presented in this paper. Physical parameters including reaction kinetics, mixing speed and solution pH were investigated. Solution pH also rose an average of 2 pH units over the 24 hour equilibrium time – a valuable side effect when treating acid mine drainage. The outcome of the study highlights the usefulness of biosolids as a biosorbent for the removal/recovery of metal ions from acid mine drainage. A simple, low-cost treatment technology requiring low maintenance would be beneficial to the mining industry to address some issues relating to AMD and would help integrate environmental and economic considerations into sustainable environmental management.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this paper was to develop a process for the production of DAG from butterfat through glycerolysis and short-path distillation and to evaluate the physical properties of the DAG in comparison with the original butterfat. Chemical glycerolysis produced a mixture of acylglycerols containing DAG together with MAG and TAG. From the mixture of glycerolysis products, MAG were removed through three consecutive distillations (vacuum <0.001 mbar) at 150°C. TAG were separated from DAG by distillation at 210°C, which gave a product with more than 80% DAG in the distillates. Distillation temperatures had significant effects on acyl migration. The formation of desirable 1,3-DAG was favored at higher temperatures. Under 210°C distillation, the equilibrium ratio of 6∶4 was obtained between 1,3-DAG and 1,2(2,3)-DAG. The FA profile of the DAG product was relatively similar to the original butterfat. The total DAG recovery was around 77% in the pilot-scale production. The different patterns of m.p. were observed between butterfat and the DAG fraction produced as well as the MAG fraction collected. Solid fat content profiles of the DAG fraction and its mixtures with rapeseed oil possessed trends similar to those of the corresponding butterfat and its mixtures with rapeseed oil. Compared with butterfat, the DAG fraction behaved differently in its thermal profiles, crystallization patterns, and rheological properties; for example, the dropping point was 13°C higher for the latter than for the former, and the crystal pattern was mostly β form for the latter, whereas the former was the β′ form.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A woven pure wool fabric has been exposed to atmospheric pressure plasma for 30 seconds using a pilot-scale. commercial machine. X-ray photoelectron spectral data revealed large increases in oxygen and nitrogen. and a large reduction in carbon. on the surfaces of the plasma-treated fibres. A CIN ratio of 3.55 for plasma-treated wool was consistent with removal of the covalently-bound fatty acids from the surface of the cuticle cells. resulting in exposure of the proteinaceous epicuticle. Dye staining experiments revealed that the back of the fabric had received the same, uniform level of treatment as the face, despite the fact that only the face had been directly exposed to the plasma. Dyes (1 % oww) were applied to fabric at 50°C (liquor ratio =40: 1) and pH values from 3 to 6. The relatively low temperature of 50°C was selected in order to accentuate the effects of plasma on the rate of dye uptake. Under these conditions, dye was adsOibed onto the fibre surfaces, with very little penetration into the fibres. Effects of the plasma treatment on the rate of dyes adsorption were dyespecific. No significant effects of plasma on the rate of dye uptake were observed with relatively hydrophobic dyes, but hydrophilic dyes were adsorbed more rapidly by the plasmatreated fabric. It would appear that for more hydrophobic dyes, hydrophobic effects are more important for the adsorption of dyes by the plasma-treated fibres, even though these fibres were quite hydrophilic. On the other hand. it is concluded that for more hydrophilic dyes, electrostatic effects are more important for adsorption by the plasma-treated fibre.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nutrient discharge into coastal areas, such as the Great Barrier Reef can result in the degradation of coastal ecosystems. For example, excess nitrogen and phosphorus can damage corals through inducing algal bloom and subsequent shading. Excessive phosphorus can further weaken coral skeletons making them susceptible to damage. Land based industries such as aquaculture can contribute to such problems. This study set out to develop a system whereby water from aquaculture can be constantly reused resulting in minimized waste discharge. A three-stage filtration system utilizing floating media and activated carbon was designed to harness bacterial processes that could reduce both particulate and dissolved compounds to the extent whereby approximately 100% reuse of the wastewater became possible. This involved efficient and effective particulate and biological removal mechanisms in both aerobic and anaerobic zones of the filtration system. This design reduced dissolved nitrogen levels by up to 70% and maintained low phosphorus levels, which allowed the reuse of water for the successful culture of barramundi with a survival rate of 97% over 25 days. This pilot scale study demonstrated the potential of reusing aquaculture wastewater from the viewpoint of reducing nutrient input into coastal environments. Future research will refine these processes and assess the performance of the system at several commercial scale applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigates and compares the performance of two different types of ultrafiltration (UF) membranes in the recovery of water from secondary treated wastewater. Filtration experiments were carried out on a pilot scale cross-flow unit using synthetic wastewater similar to the quality of secondary treated wastewater by varying the operating parameters such as transmembrane pressure (TMP), feed composition and membrane configuration. The filtration experiments demonstrated that the flux recovery through spiral polymeric UF membrane was more sensitive to the variation in TMP compared to the tubular ceramic UF membrane over the range of TMP studied. The resistance in series model was used for the evaluation of the resistance to the permeate flux. The fouling resistance, particularly irreversible resistance compared to reversible resistance plays a major role in the total resistance for the tubular ceramic membrane. In contrast clean membrane resistance is the major contributor for the total resistance of the spiral polymeric membrane. Finally, the effectiveness of the filtration treatment was determined by evaluating the rejection coefficients for various pollution indices of the wastewater. Significant differences in the performance of the membrane types were observed which are likely to impact on the selection, operation and maintenance of the membrane system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent times, biotechnological applications of microbial lipases in synthesis of many organic molecules have rapidly increased in non-aqueous media. Microbial lipases are the working horses' in biocatalysis and have been extensively studied when their exceptionally high stability in non-aqueous media has been discovered. Stability of lipases in organic solvents makes them commercially feasibile in the enzymatic esterification reactions. Their stability is affected by temperature, reaction medium, water concentration and by the biocatalyst's preparation. An optimization process for ester synthesis from pilot scale to industrial scale in the reaction medium is discussed. The water released during the esterification process can be controlled over a wide range and has a profound effect on the activity of the lipases. Approaches to lipase catalysis like protein engineering, directed evolution and metagenome approach were studied. This review reports the recent development in the field of non-aqueous microbial lipase catalysis and factors controlling the esterification/transesterification processes in organic media.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present study, copper-bearing low carbon steels were produced by direct strip casting (DSC) method on a pilot scale. The effects of copper on mechanical, microstructural, and recrystallization behavior were investigated. As-cast microstructure mainly consists of polygonal ferrite and Widmanstatten ferrite. The increase in Cu increases the amount of Widmanstatten ferrite and induces the formation of bainite in the as-cast condition. It was found that copper increases strength and hardness by solid solution strengthening, grain refinement, and precipitation hardening and the increment is significant above 1% Cu in as-cast condition. Six different compositions were selected for recrystallization study. All the samples were cold rolled to 70% reduction and annealed at three different temperatures, 600, 650, and 700°C for various times. Recrystallization responses were strongly dependent on initial microstructure and Cu content and the effect is dramatic between 1 and 2% Cu. Recrystallization time and temperature were found to be increased with increase in copper content.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A study was conducted to develop an integrated process lethality model for pressure-assisted thermal processing (PATP) taking into consideration the lethal contribution of both pressure and heat on spore inactivation. Assuming that the momentary inactivation rate was dependent on the survival ratio and momentary pressure-thermal history, a differential equation was formulated and numerically solved using the Runge-Kutta method. Published data on combined pressure-heat inactivation of Bacillus amyloliquefaciens spores were used to obtain model kinetic parameters that considered both pressure and thermal effects. The model was experimentally validated under several process scenarios using a pilot-scale high-pressure food processor. Using first-order kinetics in the model resulted in the overestimation of log reduction compared to the experimental values. When the n th-order kinetics was used, the computed accumulated lethality and the log reduction values were found to be in reasonable agreement with the experimental data. Within the experimental conditions studied, spatial variation in process temperature resulted up to 3.5 log variation in survivors between the top and bottom of the carrier basket. The predicted log reduction of B. amyloliquefaciens spores in deionized water and carrot purée had satisfactory accuracy (1.07-1.12) and regression coefficients (0.83-0.92). The model was also able to predict log reductions obtained during a double-pulse treatment conducted using a pilot-scale high-pressure processor. The developed model can be a useful tool to examine the effect of combined pressure-thermal treatment on bacterial spore lethality and assess PATP microbial safety. © 2013 Springer Science+Business Media New York.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biological nitrogen removal is an important task in the wastewater treatment. However, the actual removal of total nitrogen (TN) in the wastewater treatment plant (WWTP) is often unsatisfactory due to several causes, one of which is the insufficient availability of carbon source. One possible approach to improve the nitrogen removal therefore is addition of external carbon source, while the amount of which is directly related to operation cost of a WWTP. It is obviously necessary to determine the accurate amount of addition of external carbon source according to the demand depending on the influent wastewater quality. This study focused on the real-time control of external carbon source addition based on the on-line monitoring of influent wastewater quality. The relationship between the influent wastewater quality (specifically the concentration of COD and ammonia) and the demand of carbon source was investigated through experiments on a pilot-scale A/O reactor (1m3) at the Nanjing WWTP, China. The minimum doses of carbon source addition at different situations of influent wastewater quality were determined to ensure the effluent wastewater quality meets the discharge standard. The obtained relationship is expected to be applied in the full-scale WWTPs. .

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O reator seqüencial em batelada (RSB) é uma variante de lodos ativados capaz de promover a remoção da matéria orgânica, a remoção dos nutrientes e a separação da fase sólida da líquida em uma unidade. A valorização das áreas urbanas, a carência de tratamento terciário e a crescente necessidade de redução nas dimensões de estações de tratamento de esgoto devem impulsionar o desenvolvimento de pesquisas sobre RSB em curto espaço de tempo. A partir deste cenário, o presente trabalho teve como objetivo modelar o comportamento do reator seqüencial em batelada a partir da teoria desenvolvida por Marais e colaboradores. Dentro deste contexto, a cinética de oxidação dos compostos orgânicos e do nitrogênio na forma amoniacal foi descrita e modelada. O trabalho experimental foi realizado em duas escalas: bancada e piloto. O experimento em escala de bancada foi dividido em duas fases. Foram utilizados dois RSBs e um sistema de fluxo contínuo. Um reator seqüencial em batelada (RSB1) foi operado com idade de lodo. O outro reator em batelada (RSB2) foi operado em função da relação F/M e o sistema de fluxo contínuo (FC1) por idade de lodo. Estes reatores foram utilizados como controle no monitoramento do RSB1 Na primeira fase, os três sistemas removeram apenas matéria orgânica. Na fase seguinte, removeram matéria orgânica e nitrogênio. A partir dos resultados obtidos em escala de bancada, foi possível concluir que o modelo desenvolvido pode ser aplicado ao reator seqüencial em batelada operando com idade de lodo, permitindo determinar a qualidade do efluente, a produção de lodo e o consumo de oxidante. Além disso, foi possível descrever o comportamento da taxa de consumo de oxigênio em função da oxidação da matéria orgânica biodegradável e da oxidação do nitrogênio na forma amoniacal. O reator seqüencial em batelada operado com idade de lodo (RSB1) alcançou remoção média de matéria orgânica de 90 % nas idades de lodo de 30, 20, 10 e 5 dias. A remoção média de nitrogênio mais elevada foi obtida na idade de lodo de 20 dias e atingiu 87 %. Nas demais idades de lodo a remoção média de nitrogênio variou entre 79 e 42 %. A modelagem do comportamento do reator seqüencial em batelada resultou numa proposta de metodologia para o dimensionamento que tem como finalidade abolir critérios obsoletos e inadequados para o dimensionamento de lodos ativados em batelada No experimento em escala piloto, foram utilizados um reator seqüencial em batelada, denominado RSB, e um sistema de fluxo contínuo com a configuração Bardenpho, denominado FC. Os sistemas de lodos ativados sob investigação foram monitorados em duas idades de lodo: 30 e 10 dias. Os dados do experimento em escala piloto mostraram que os processos físico-químicos e biológicos envolvidos na remoção de matéria orgânica e nitrogênio no RSB foram mais eficientes do que no Bardenpho quando trataram o mesmo esgoto doméstico e foram submetidos às mesmas condições operacionais. No RSB, obteve-se 88 e 89 % de remoção de matéria orgânica nas idades de lodo de 10 e 30 dias, respectivamente. Nesta seqüência das idades de lodo, a eficiência do Bardenpho caiu de 87 para 76 %. O sistema de fluxo contínuo removeu 66 e 52 % do nitrogênio total afluente nas idades de lodo de 10 e 30 dias, respectivamente. A eficiência do RSB na remoção de nitrogênio foi determinada apenas na idade de lodo de 10 dias e alcançou 69 %. A partir dos resultados obtidos em escala de bancada e piloto, constata-se que o reator seqüencial em batelada operando com idade de lodo pode ser utilizado no tratamento de esgoto doméstico e obter eficiência na remoção de matéria orgânica e nitrogênio igual ou superior ao sistema de fluxo contínuo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermoelectric energy conversion can be performed directly on generators without moving parts, using the principle of SEEBECK effect, obtained in junctions of drivers' thermocouples and most recently in semiconductor junctions type p-n which have increased efficiency of conversion. When termogenerators are exposed to the temperature difference (thermal gradient) eletromotriz a force is generated inducing the appearance of an electric current in the circuit. Thus, it is possible to convert the heat of combustion of a gas through a burner in power, being a thermoelectric generator. The development of infrared burners, using porous ceramic plate, is possible to improve the efficiency of heating, and reduce harmful emissions such as CO, CO2, NOx, etc.. In recent years the meliorate of thermoelectric modules semiconductor (TEG's) has stimulated the development of devices generating and recovery of thermal irreversibility of thermal machines and processes, improving energy efficiency and exergy these systems, especially processes that enable the cogeneration of energy. This work is based on the construction and evaluation of a prototype in a pilot scale, for energy generation to specific applications. The unit uses a fuel gas (LPG) as a primary energy source. The prototype consists of a porous plate burner infrared, an adapter to the module generator, a set of semiconductor modules purchased from Hi-Z Inc. and a heat exchanger to be used as cold source. The prototype was mounted on a test bench, using a system of acquisition of temperature, a system of application of load and instrumentation to assess its functioning and performance. The prototype had an efficiency of chemical conversion of 0.31% for electrical and heat recovery for cogeneration of about 33.2%, resulting in an overall efficiency of 33.51%. The efficiency of energy exergy next shows that the use of primary energy to useful fuel was satisfactory, although the proposed mechanism has also has a low performance due to underuse of the area heated by the small number of modules, as well as a thermal gradient below the ideal informed by the manufacturer, and other factors. The test methodology adopted proved to be suitable for evaluating the prototype

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The generation for termoeletricity is characterized as a solid process of conversion of thermal energy (heat) in electric without the necessity of mobile parts. Although the conversion process is of low efficiency the system presents high degree of trustworthiness and low requisite of maintenance and durability. Its principle is based on the studies of termogeneration carried through by Thomas Seebeck in 1800. The frank development of the technologies of solid state for termoeletricity generation, the necessity of the best exploitation of the energy, also with incentive the cogeneration processes, the reduction of the ambient impact allies to the development of modules semiconductors of high efficiency, converge to the use of the thermoeletric generation through components of solid state in remote applications. The work presents the development, construction and performance evaluation of an prototype, in pilot scale, for energy tri-generation aiming at application in remote areas. The unit is composed of a gas lamp as primary source of energy, a module commercial semiconductor for thermoelectric generation and a shirt for production of the luminosity. The project of the device made compatible a headstock for adaptation in the gas lamp, a hot source for adaptation of the module, an exchanger of to be used heat as cold source and to compose first stage of cogeneration, an exchanger of tubular heat to compose second stage of cogeneration, the elaboration of a converter dc-dc type push pull, adequacy of a system of acquisition of temperature. It was become fullfilled assembly of the prototype in group of benches for tests and assay in the full load condition in order to evaluate its efficiency, had been carried through energy balance of the unit. The prototype presented an electric efficiency of 0,73%, thermal of 56,55%, illumination of 1,35% and global of 58,62%. The developed prototype, as the adopted methodology of assay had also taken care of to the considered objectives, making possible the attainment of conclusive results concerning to the experiment. Optimization in the system of setting of the semicondutor module, improvement in the thermal insulation and design of the prototype and system of protection to the user are suggestions to become it a commercial product

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigates a new treatment system of wastewater by anaerobic and aerobic biological filters for nitrogen modification. The main objective of this study was evaluate, on a pilot scale, quantitatively and qualitatively the bacterian nitrifying community in a experimental sewage treatment system made by aerobics biological filters in series, in search of figure out the dynamic of nitrogen modification process. It was collected and laboratorial analysed microbiologically, regarding NMP of Nitrosomonas e Nitrobacter, and physical-chemically considering nitrogen sequence. We conclude that: the association in aerobic biological filters under nutrition controlled conditions and oxygen level allows the appearance of bacterian community responsible for the nitrogen modification; the method used, despite its limitations, provided the selection of autotrophic nitrifying microorganisms, allowing the identification of Nitrosomonas and Nitrobacter; the flow direction tested in the experimental unit did not affect the nitrifying bacterial community, certainly because they were kept drowned and did not occur flow speed that could breake the formed biomass; the nitrification process happened in aerated biological filters in all phases of the research, comproved by microbiological tests; in the third phase of the research the increase of the oxygen rate was significant for the nitrificant bacterian community in the aerate biological filters, allowing its growth, occurring relation between the efficiency of nitrification system and the quantity of organisms responsible for this process; the conduit used in aerated biological filters showed satisfactory performance support material to the nitrifying bacteria development

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Only 32% of the population of Natal is attended by sewage, while the remaining population use pits and septic tanks. The characterization of the contents of septic tanks and pits contributes to the performance of such system and may guide the decision on treatment of these contents. The main of this research is to characterize the contents of interior residential pits and septic tanks in the greater Natal, with the following specific goals: to develop and manufacture a sampler capable of collecting a representative sample of the entire column (the surface scum, the clarified liquid and sludge bottom); to compare the contents of the tanks with the pits; to compare the contents of the septage from vacuum trucks; to relate the composition content with socioeconomic characteristics of households; to compare the content in both chambers of the septic tanks in series; to assess the situation of the content before and six months after the cleanness; and ultimately propose a pilot scale plant for treatment of septage. Once the sampler was developed, samples were collected within 14 septic tanks and 10 pits in many districts of Natal. Medians of the 24 systems were obtained: temperature, pH, conductivity, oil and grease, total solids, total suspended solids and sediments of 28.0 °C, 6.95; 882 mS/cm, 75.2 mg/L; 10,169 mg/L, 6,509 mg/L and 175 mL/L respectively; 111.0 mgN/L for ammonia, 130.5 mgN/ L for organic nitrogen, 0.2 mgN/L for nitrite, 0.4 mg/L for nitrate; 8935 mgO2/L for COD, 29.2 mgP/L for total phosphorus, thermotolerant coliforms from 9.95 E +06 CFU/100mL helminth eggs and 9.2 eggs/L with a maximum concentration of 688 eggs/L and minimum of 0 eggs/L. Medians of organic nitrogen and TKN were significantly different between groups of tanks and pits. The systems with cleanness gap from 11 and 20 years presented the higher concentrations for most variables. The effluent from the toilets and bathrooms participate more effectively in contributing fractions of solids, alkalinity, nitrogen, COD, total phosphorus, thermotolerant coliforms and helminth eggs. The systems used by socioeconomics class with income from R$ 3,700.00 to R$ 7,600.00, presented higher concentrations for COD, nitrogen, solids and helminth eggs. The first of the two chambers had always presented higher concentrations over the second compartment. The analysis of variance for most variables, showed that the values of septic tanks, pits and septage from vacuum trucks belong to the same group. In the samples taken after cleanness, the median of pH and temperature increased, while alkalinity, COD, organic nitrogen, total phosphorus, ammonia and helminth eggs decreased. The oils and greases and thermotolerant coliforms had slightly varied due to the continuous release of sewage into the systems that maintained their steady state concentrations.