330 resultados para Piabina argentea - Citogenética
Resumo:
The zooplankton community of the littoral zone of Nyanza Gulf, Lake Victoria, was studied between June 1998 and June 1999 to identify and quantify various zooplankton groups, and investigate the interactions that occur between them and the littoral fish through the food chain. Zooplankton samples were collected from five stations using a 83 micro-m mesh size plankton net hauled vertically through the water column. Fish samples were obtained by beach seine, except at Gingra (May 1999), where trawl samples were used. Gut/stomach analysis was carried out on the three major commercial species, Lates niloticus (L.), Oreochromis niloticus (L.) and Rastrineobola argentea (Pellegrin).
Resumo:
Oreochrimis niloticus (L.) was introduced to Lake victoria in the 1950s. It remained relatively uncommon in catches until 1965, when the numbers began to increase dramatically. It is now the third most important commercial fish species after the Nile perch, Lates niloticus (L.) and Rastrineobola argentea (Pellegrin). Oreochromis niloticus is considered a herbivore, feeding mostly on algae and plant material. The diet now appears to be more diversified , with insects, fish, algae and plant materials all being important food items. Fish smaller than 5 cm TL have a diverse diet but there is a decline in the importance of zooplankton, the preferred food item of small fish, as fish get larger. The shift in diet could be due to changes which have occurred in the lake. Water hyacinth, Eichhornia crassipes (Mart.) Solms, which harbours numerous insects in its root balls, now has extensively coverage over the lake. The native fish species which preyed on these insects (e.g. haplochromines) have largely been eliminated and O. niloticus could be filling niches previously occupied by these cichlids and non cichlid fishes. The change in diet could also be related to food availability and abundance where the fish is feeding on the most readily available food items.
Resumo:
Catch rates for both Nile perch (Lates niloticus) and dagaa (Rastrineobola argentea) from Kenyan waters of Lake Victoria have steadily increased through the 1980s, even though the fishing effort also increased during the same period. However, analysis of catch and effort data within and outside the Nyanza Gulf suggests an increase in catch rates due to a shift in effort from the inshore Gulf region to higher catch rates in the offshore region, rather than an increase in abundance. Analysis of catch rates by gear type both in and outside the Nyanza Gulf show that 1991 catch rates are lower than 1989 levels by 60-80% in some instances. Since the fishing power of these gears has increased during this period, it is likely that fish abundance declined more than catch rates. A dynamic population model is used to stimulate Nile perch dynamics. It indicates that a decline in catches should be anticipated.
Resumo:
Lake Victoria, besides being the second largest in the world after Lake Superior, is the largest tropical lake. Its waters are shared by Kenya (6% of the surface area), Uganda (43%), and Tanzania (51%). Before dramatic structural and functional changes manifested in the lake's ecosystem especially in the 1980s, fish life flourished in the lake's entire water column at all times of the year. Currently, the situation is much more different from what it was in the past. The exponential increase in the introduced Nile perch (Lates niloticus) and Nile tilapia (Oreochromis niloticus) stocks, siltation, wetland degradation and eutrophication have characterised the lake ecosystem. The two exotic species and the small native cyprinid (Rastrineobola argentea) form the basis of the commercial fishery that was once dominated by two native tilapiines (Oreochromis esculentus and Oreochromis variabilis) and five other large-bodied endemic fishes. Severe deoxygenation observed at shallow depths (Ochumba 1990; Hecky et al., 1994) indicates that a large volume of the lake is unable to sustain fish life. The Lake Victoria catchment is one of the most densely populated areas in East Africa, encompassing a population of about 30 million people. Widespread poverty resulting from high inflation rates, lack of opportunities and general unemployment have characterised the lakeside communities over much of the last two decades. The biophysical environment in which Lake Victoria exists makes the lake particularly susceptible to changes that occur as a result of human modification to the watershed or the lake itself, thus rendering benefits from the lake unsustainable.
Resumo:
The first fishery survey of Lake Victoria was conducted between 1927 and 1928 (Graham 1929). Atthat time, the lake had a diverse fish fauna and the fishery was dominated by two endemic tilapiine cichlids; Oreochromis esculentus (Graham 1929) and O. variabilis (Boulenger 1906). There were a number of other species such as Protopterus aethiopicus Heckel 1851, Bagrus docmac (Forsk.) 1775, Clarias gariepinus (Burchell), Barbus species, mormyrids, Synodontis spp, Schilbe intermedius (Linn.) 1762 and Rastrineobola argentea Pellegrin, 1904 that were also abundant in the lake most of which made a significant contribution to the fishery (Graham 1929, Worthington 1929, 1932, Kudhongania & Cordone 1974). Haplochromine cichlids were represented by at least 300 species more than 99% of them endemic (Greenwood, 1974; Witte et al., 1992 a & b). The fishery of Lake Victoria was similar to that of lakes Kyoga and Nabugabo (Worthington 1929; Trewavas 1933; Greenwood 1965, 1966; Beadle 1962, 1981). There were also important fisheries on the inflowing rivers of Lake Victoria, the most important of which were Labeo victorianus and Barbus altianalis (Cadwallader 1965). The small sized species notably Rastrineobola argentea and haplochromines cichlids were not originally commercially exploited.
Resumo:
Until the 1970s, Lake Victoria had a multi-species fishery dominated by the tilapiine and haplochromine cichlids. There were important subsidiary fisheries for more than 20 genera of non-cichlid fishes, including catfishes (Bagrus docmak, Clarias gariepinus, Synodontis spp and Schilbe intermedius), the lungfish (Protopterus aethiopicus) and Labeo victorianus) (Kudhongania and Cordone 1974). Stocks of most of these species declined and others disappeared following the introduction of four tilapiines (Oreochromis niloticus, Oreochromis leucostictus, Tilapia rendalli and Tilapia zillit) and Nile perch (Lates niloticus) during the 1950s. Since then the commercial fishery in the Uganda portion of Lake Victoria has been dominated by the Nile perch, Nile tilapia (Oreochromis niloticus) and the native cyprinid species, Rastrineobola argentea (Mukene).
Resumo:
Many haplochromine cichlids coexisted in Lake Victoria before the upsurge of Nile perch. The introduction of the Nile perch led to depletion of many haplochromines and other fish species in Lake Victoria. The impact of Nile perch predation on haplochromines differed for different haplochromine trophic groups. Yssichromis fusiformis (G) and Yssichromis laparogramma (G) are among the species that have survived in the lake. Yssichromis spp. was studied with the aim of determining their trophic role, food and feeding habits. Samples were collected from Bugaia, Buvuma channel and Napoleon Gulf in the northern part of Lake Victoria. The food of Yssichromis spp. varied with size of fish. Both Y fusiformis and Y laparogramma fed on Copepods, Cladocerans, Chaoborus and Chironomids. Juvenile Yssichromis spp. fed exclusively on zooplankton comprising Cyclopoid copepods, Calanoid copepods and Cladocera. The relative importance of Chironomid larvae and Calanoid copepods was higher in Bugaia than in Buvuma channel while Cyclopoid copepods and Chironomid pupae were relatively less important in Bugaia. The main food items that Yssichromis spp. fed on in Buvuma channel were Chironomid larvae Cyclopoid copepods, Cladocerans and Calanoid copepods. In Napoleon Gulf, fish caught from commercial fishery of Rastrineobola argentea (P) had fed on Chaoborus and Chironomids. Overall, Yssichromis spp. fed on more zooplankton in Buvuma than in Bugaia. Yssichromis spp. and R. argentea are presently the most abundant zooplanktivores in the northern part of Lake Victoria and are playing an important trophic role as major consumers of zooplankton and insect larvae in the foodweb of the lake ecosystem. Yssichromis spp. are bridging the transfer of energy from the lower to the higher trophic levels as secondary consumers. The fishery is still not contributing to the direct conversion of the primary products, the phytoplankton and detritus that were efficiently utilised by the diverse haplochromine trophic groups that existed before the Nile perch boom.
Resumo:
Fishing using light to attract fish (The light fishery) was introduced on Lake AIbert from Lake Victoria where it is used to catch mukene Rastrineobola argentea. The light fishery on Lake Albert targets ragoge brycinus nurse and mukene/muziri (Neobola bredoi), These species species now contribute to more than 50% of the catches from this lake. Ragoge and muziri were until the early 1990's not important in the commercial fishery but only served as food to the large predatory fish species that formed the basis of the fishery.
Resumo:
Under the Implementation of the Fisheries Management Plan (IFMP) for Lake Victoria Result area 4, quarterly gillnet surveys are undertaken to monitor changes in fish stocks and environmental parameters in the shallow nontrawlable areas of the lake For purposes of monitoring surveys, the Ugandan sector of Lake Victoria is divided into 3 zones as shown in Figure 1. During the second quarter of APE2, two gillnet surveys were undertaken in zones 1 and 3 in February and March 2006 respectively. The purpose of the surveys was to monitor changes in the fish stocks and their biological characteristics, water quality, algal dynamics and invertebrate communities; as detailed in the various sections of the report. The surveys followed those conducted in November and December 2006 in the same zones. Results of the surveys showed that the number of fish taxa was higher in the near-shore fleets (0-100m) decreasing towards offshore. The near-shore areas were also associated with high primary productivity and hence secondary production to which Caridina and other invertebrates are part. These organisms are an important source of food for the fish and this may partly account for the high number of fish species recorded in this area of the lake. It was also observed that although Nile perch was the most dominant fish species recorded in all the stations during the surveys, haplochromines, Brycinus sadleri, Brycinus jacksonii Oreochromis niloticus and various mormyrid species contributed significantly to the fish biomass. The presence of many fish species and their coexistence with the predator, Nile perch is attributed to the presence of macrophyte cover and rocky habitats which serve as refugia in the shallow inshore habitats of Lake Victoria. In addition, the vegetated habitats are an important source of food for the fishes. As reported in macro-invertebrate studies, big populations of Caridina and other invertebrates were recorded among macrophyte beds. Caridina is an important source of food for juvenile Nile perch and other fish species so are the other invertebrates especially chironomid larvae, odonata nymphs and molluscs. Resurgence in haplochromine cichlids was observed during the surveys. The presence of haplochromines cichlids in all the sites especially Thruston Bay where it ranked the second by percentage contribution in number, is evidence of the recovery of this group of fishes which had declined largely due to predation by L. niloticus. Caridina nilotica has also increased in biomass and is a major component of the Nile perch diet. This could have reduced predation pressure on the haplochromines by Nile perch and has possibly contributed to recent resurgence in haplochromines cichlids in the lake in the shallow nontrawlable areas of the lake Rastrineobola argentea was found to be an important prey item for Nile perch and other fish species such as Clarias gariepinus. Measures should therefore be taken to ensure sustainable harvesting of Dagaa so that there is enough left to sustain the fishery of Nile perch and other species.
Resumo:
Increased management attention to the fisheries tn Uganda is fuelled by five major factors:socio-economic demands, human population increase,stock depletion, biodiversity loss and,environmental degradation.Fish exports from Uganda to overseas and regional markets have rapidly increased since the mid 1990s and it is estimated that total exports are worth at least US$ 200m three quarters of the value due mostly to Nile perch exports to overseas markets.Exports to regional markets are dominated by variously processed tilapia "mukene" (Rastrineobo/a argentea),Nile perch "angara"(A/estes baremose) and cat fishes.Virtually all major water bodies contribute to this trade. A combinatilm of exports and an increased human population has seen the per capita fish consumption in Uganda drop from 15kg in the early 1990s to almost 10kg by 2005.this figure is below the WHO recommended fish protein intake of 17kg. the apparent fish gap in a liberalised economic framework has stimulated interest in commercial fish farming
Resumo:
The Uganda sector of Lake Victoria occupies 29,580 km2 (43%). The lake used to boast of a multi-species fishery but presently relies on three major species Lates niloticus, Oreochromis niloticus and Rastrineobola argentea. During the past decade the total fish production on the Ugandan sector increased drastically from 17,000 tonnes in 1981 to about 13,000 tonnes 1991, indicating a healthy state of the fishery. This was contributed by a combination of factors including the explosive establishment of the introduced L. niloticus which contributed 60.8% in 1991 and the increase in the number of fishing canoes from 3470 in 1988 to 8000 in 1990. Isolated fishery resources studies carried out in different areas of the lake since 1971 seem, however, to indicate contrary trends in the available stocks and, therefore, the status of the fishery. In the experimental fishery, continued decline in catch rates have been recorded. Similarly, in the commercial fishery catch per unit of effort has been considerably poor (33 kg per canoe during January - March 1992) and the average size of individual fish laRded continued to decline, obviously pointing at possible over-fishing. This, therefore, calls for further urgent research on the available stocks for proper management strategies to be formulated.
Resumo:
Experimental trawling during the period 1981/86 and analysis of past commercial catch landings, mainly in the northern portion of Lake Victoria have indicated that the standing stocks and therefore, the estimates of sustainable yields of the most important fish species have unquestionably changed since the 1969/71 comprehensive lake-wide stock assessment survey. Lake Victoria which was originally a multi-species fishery now relies on two introduced species (Lates niloticus and Oreochromis niloticus) and one indigenous cyprinid (Rastrineobola argentea). Most of the traditional fish species, including the once dominant haplochromines, have either declined or disappeared. The catch rates in the experimental trawl catches declined from 797 kg/hr in 1969/71 to 575 kg/hr in 1981 and 166 kg/hr in 1985. The contribution of L. niloticus in the trawl catch increased from 0.9% in 1981 to 95.6% in 1985 while the contribution of the haplochromines decreased from about 91% to about 1% over the same period. The mean size of the individual fish caught (particularly the Nile perch) was also on the decline. Similar trends were also observed in the commercial fishery. However, recent observations in the Lake Kyoga commercial fishery that O. niloticus has now surpassed L.niloticus in importance may create more uncertainty regarding the future trends of the fish stocks of Lake Victoria. Inspite of the above situation, developments to increasingly exploit the fish stocks of the lake for export continue to take place. A number of fish processing and/or handling plants have been established in the Jinja, Kampala and Entebbe areas of the lake. Each of these plants is capable of handling upwards of 10 tons of fish a day, the target fish being L. niloticus and O. niloticus.
Resumo:
The traditional lucrative fisheries of Lakes Victoria and Kyoga were based on similar multispecies itchthyofaunas. Man's activities on and around these lakes have both directly and indirectly assisted to modify the natural trends and components of the commercial fisheries. The exotic L.niloticus and O.niloticus together with the native R. argentea form the major component of current commercial landings. The total catches are higher but it is not yet clear whether the increase would endure given the fragility of predator/prey systems. The trophodynamics are still modifying and it is not certain how ecosystem function would be influenced. It is, therefore, prudent and desirable to undertake appropriate research investigations in order to guide the multiobjective activities of man on these lakes.
Resumo:
Redescription of Balantidium polyvacuolum Li 1963, collected from the hindgut of Xenocypris davidi and Xenocypris argentea, from Niushan Lake Fishery (30A degrees 19' N, 114A degrees 31' E) in Wuhan City, Hubei Province, China in April and June 2007 is presented in this paper to complete Li's description at both light and scanning electronic microscopic levels. The unique body shape of B. polyvacuolum-highly arched dorsal side and flattened ventral surface-as well as its remarkable concave platelet present in the centroventral were well described and compared with other close Balantidium species. Besides, two types of vestibulum shape are observed in our present work, which may suggest the existence of two subspecies or genotype species of these balantidia.
Resumo:
We surveyed mitochondrial DNA (mtDNA) sequence variation in the subfamily Xenocyprinae from China and used these data to estimate intraspecific, interspecific, and intergeneric phylogeny and assess biogeographic scenarios underlying the geographic structure of lineages. We sequenced 1140 bp of cytochrome b from 30 individuals of Xenocyprinae and one putative outgroup (Myxocypris asiaticus) and also sequenced 297 bp of ND4L, 1380 bp of ND4, 68 bp of tRNA(His), and 69 bp of tRNA(Ser) from 17 individuals of Xenocyprinae and the outgroup (M. asiaticus). We detected high levels of nucleotide variation among populations, species, and genera. The phylogenetic analysis suggested that Distoechodon hupeinensis might be transferred to the genus Xenocypris, the taxonomic status of the genus Plagiognathops might be preserved, and species of Xenocypris and Plagiognathops form a monophyletic group that is sister to the genus Distoechodon and Pseudobrama. The introgressive hybridization might occur among the populations of X. argentea and X. davidi, causing the two species to not be separated by mtDNA patterns according to their species identification, and the process and direction of hybridization are discussed. The spatial distributions of mtDNA lineages among populations of Xenocypris were compatible with the major geographic region, which indicated that the relationship between Hubei + Hunan and Fujian is closer than that between Hubei + Hunan and Sichuan, From a perspective of parasite investigation, our data suggested that the fauna of Hexamita in Xenocyprinae could be used to infer the phylogeny of their hosts. (C) 2001 Academic Press.