970 resultados para Physics, Electricity and Magnetism|Physics, Condensed Matter
Resumo:
A quantitative correlation between the glass forming ability and the electronic parameters of metallic alloys is presented. It is found that the critical cooling rate for glass formation (R(c)) correlates well with the average work function difference (Delta phi) and the average electron density difference (Delta n(ws)(1/3)) among the constituent elements of the investigated alloys. A correlation coefficient (R(2)) of 0.77 was found for 68 alloys in 30 metallic systems, which is better than the previous proposed correlation between the glass forming ability and the average Pauling electronegativity difference.
Resumo:
The glass-forming ability (GFA) of metallic alloys is associated with a topological instability criterion combined with a new parameter based on the average electronegativity difference of an element and its surrounding neighbours. In this model, we assume that during solidification the glassy phase competes directly with the supersaturated solid solution having the lowest topological instability factor for a given composition. This criterion is combined with the average electronegativity difference among the elements in the alloy, which reflects the strength of the liquid. The GFA is successfully correlated with this combined criterion in several binary glass-forming systems.
Resumo:
This work examines the extraction of mechanical properties from instrumented indentation P-h(s) curves via extensive three-dimensional finite element analyses for pyramidal tips in a wide range of solids under frictional and frictionless contact conditions. Since the topography of the imprint changes with the level of pile-up or sink-in, a relationship is identified between correction factor beta in the elastic equation for the unloading indentation stage and the amount of surface deformation effects. It is shown that the presumption of a constant beta significantly affects mechanical property extractions. Consequently, a new best-fit function is found for the correlation between penetration depth ratios h(e)/h(max), h(r)/h(max) and n, circumventing the need for the assumption of a constant value for beta, made in our prior investigation [Acta Mater. 53 (2005) pp. 3545-3561]. Simulations under frictional contact conditions provide sensible boundaries for the influence of friction on both h(e)/h(max) and h(r)/h(max). Friction is essentially found to induce an overestimation in the inferred n. Instrumented indentation experiments are also performed in three archetypal metallic materials exhibiting distinctly different contact responses. Mechanical property extractions are finally demonstrated in each of these materials.
Resumo:
The magnetic Barkhausen noise (MBN) is a phenomenon sensitive to several kinds of magnetic material microstructure changes, as well as to variations in material plastic deformation and stress. This fact stimulates the development of MBN-based non-destructive testing (NDT) techniques for analyzing magnetic materials, being the proposition of such a method, the main objective of the present study. The behavior of the MBN signal envelope, under simultaneous variations of carbon content and plastic deformation, is explained by the domain wall dynamics. Additionally, a non-destructive parameter for the characterization of each of these factors is proposed and validated through the experimental results. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this work, we experimentally showed that the spontaneous segregation of MgO as surface excess in MgO doped SnO(2) nanoparticles plays an important role in the system`s energetics and stability. Using Xray fluorescence in specially treated samples, we quantitatively determined the fraction of MgO forming surface excess when doping SnO(2) with several different concentrations and established a relationship between this amount and the surface energy of the nanoparticles using the Gibbs approach. We concluded that the amount of Mg ions on the surface was directly related to the nanoparticles total free energy, in a sense that the dopant will always spontaneously distribute itself to minimize it if enough diffusion is provided. Because we were dealing with nanosized particles, the effect of MgO on the surface was particularly important and has a direct effect on the equilibrium particle size (nanoparticle stability), such that the lower the surface energy is, the smaller the particle sizes are, evidencing and quantifying the thermodynamic basis of using additives to control SnO(2) nanoparticles stability. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Ni-doped SnO(2) nanoparticles prepared by a polymer precursor method have been characterized structurally and magnetically. Ni doping (up to 10 mol%) does not significantly affect the crystalline structure of SnO(2), but stabilizes smaller particles as the Ni content is increased. A notable solid solution regime up to similar to 3 mol% of Ni, and a Ni surface enrichment for the higher Ni contents are found. The room temperature ferromagnetism with saturation magnetization (MS) similar to 1.2 x 10(-3) emu g(-1) and coercive field (H(C)) similar to 40 Oe is determined for the undoped sample, which is associated with the exchange coupling of the spins of electrons trapped in oxygen vacancies, mainly located on the surface of the particles. This ferromagnetism is enhanced as the Ni content increases up to similar to 3 mol%, where the Ni ions are distributed in a solid solution. Above this Ni content, the ferromagnetism rapidly decays and a paramagnetic behavior is observed. This finding is assigned to the increasing segregation of Ni ions (likely formed by interstitials Ni ions and nearby substitutional sites) on the particle surface, which modifies the magnetic behavior by reducing the available oxygen vacancies and/or the free electrons and favoring paramagnetic behavior.
Resumo:
Properties of hybrid films can be enhanced if their molecular architecture is controlled. In this paper, poly (p-phenylene vinylene) was mixed with stearic acid in order to form stable hybrid Langmuir monolayers. Surface properties of these films were investigated with measurements of surface pressure, and also with polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS). The films were transferred from the air-water interface to solid supports through the Langmuir-Blodgett technique, and the viability of the film as optical device was investigated with fluorescence spectroscopy. Comparing the fluorescent spectra for the polymer in solution, as a casting film, and as an LB film, the emission bands for LB films were narrower and appeared at lower wavelengths. The interactions between the film components and the design for the LB film may take advantage of the method to immobilize luminescent polymers in mixed ultrathin films adsorbed in solid matrices. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Assuming that different energy dissipation mechanisms are at work along hysteresis, a hysteresis loss subdivision procedure has been proposed, using the induction at maximum permeability ( around 0.8 T, in electrical steels) as the boundary between the ""low-induction`` and the ""high-induction`` regions. This paper reviews the most important results obtained in 10 years of investigation of the effect of microstructure on these components of the hysteresis loss. As maximum induction increases, the ""low-induction loss`` increases linearly up to 1.2 T, while the ""high-induction loss`` is zero up to 0.7 T and then increases as a power law with n = 5. Low-induction loss behavior is linearly related to H(c) between 0.4 and 1.2 T. Grain size has a larger influence on low-induction losses than on high-induction losses. Texture has a much stronger influence on high loss than on low-induction loss, and it is related to the average magnetocrystalline energy. 6.5%Si steel shows smaler hysteresis loss at 1.5 T than 3.5%Si steel only because of its smaler high-induction component. The abrupt increase in hysteresis loss due to very small plastic deformation is strongly related to the high-induction loss component. These results are discussed in terms of energy dissipation mechanisms such as domain wall movement, irreversible rotation and domain wall energy dissipation at domain nucleation and annihilation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The phenomenon of magnetoacoustic emission (MAE) has been ascribed usually to one of two origins: either (1) motion of non-180 degrees domain walls or (2) creation or annihilation of domains. In this paper, we present strong evidence for the argument that the only origin for MAE is motion of non-180 degrees domain walls. The proof is evident as a result of measurements of zero MAE for a wide range of stress in the isotropic zero magnetostrictive polycrystalline alloy of iron with 6.5% silicon. We also explain why it was that the alternative origin was proposed and how the data in that same experiment can be reinterpreted to be consistent with the non-180 degrees wall motion origin. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The behavior of the Steinmetz coefficient has been described for several different materials: steels with 3.2% Si and 6.5% Si, MnZn ferrite and Ni-Fe alloys. It is shown that, for steels, the Steinmetz law achieves R(2)> 0.999 only between 0.3 and 1.2 T, which is the interval where domain wall movement dominates. The anisotropy of Steinmetz coefficient for non-oriented (NO) steel is also discussed. It is shown that for a NO 3.2% Si steel with a strong Goss component in texture, the power law coefficient and remanence decreases monotonically with the direction of measurement going from rolling direction (RD) to transverse direction (TD), although coercive field increased. The remanence behavior can be related to the minimization of demagnetizing field at the surface grains. The data appear to indicate that the Steinmetz coefficient increases as magnetocrystalline anisotropy constant decreases. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
An ultra-low carbon steel (30 ppm after decarburization) containing Al and Si was aged for distinct soaking times at 210 degrees C. The core loss increased continuously until around 24 h. After that, only slight changes were verified. It was found that only the hysteresis loss component changed during the aging treatment. By internal friction test and transmission electron microscopy it was seen that carbon precipitation caused the magnetic aging. By scanning electron microscopy it could be concluded that the increase of aging index was attributed to the high number of carbides larger than 0.1 mu m. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
The impact of the titanium nitride (TIN) gate electrode thickness has been investigated in n and p channel SOI multiple gate field effect transistors (MuGFETs) through low frequency noise charge pumping and static measurements as well as capacitance-voltage curves The results suggest that a thicker TIN metal gate electrode gives rise to a higher EOT a lower mobility and a higher interface trap density The devices have also been studied for different back gate biases where the GIFBE onset occurs at lower front-gate voltage for thinner TIN metal gate thickness and at higher V(GF) In addition it is demonstrated that post deposition nitridation of the MOCVD HfSiO gate dielectric exhibits an unexpected trend with TIN gate electrode thickness where a continuous variation of EOT and an increase on the degradation of the interface quality are observed (C) 2010 Elsevier Ltd All rights reserved
Resumo:
The theoretical and experimental open-circuit voltage optimizations of a simple fabrication process of silicon solar cells n(+)p with rear passivation are presented. The theoretical results were obtained by using an in-house developed program, including the light trapping effect and metal-grid optimization. On the other hand, the experimental steps were monitored by the photoconductive decay technique. The starting materials presented thickness of about 300 pm and resistivities: FZ (0.5 Omega cm), Cz-type 1 (2.5 Omega cm) and Cz-type 2 (3.3 Omega cm). The Gaussian profile emitters were optimized with sheet resistance between 55 Omega/sq and 100 Omega/sq, and approximately 2.0 mu m thickness in accordance to the theoretical results. Excellent implied open-circuit voltages of 670.8 mV, 652.5 mV and 662.6 mV, for FZ, Cz-type 1 and Cz-type 2 silicon wafers, respectively, could be associated to the measured lifetimes that represents solar cell efficiency up to 20% if a low cost anti-reflection coating system, composed by random pyramids and SiO(2) layer, is considered even for typical Cz silicon. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This work characterizes the analog performance of SOI n-MuGFETs with HfSiO gate dielectric and TiN metal gate with respect to the influence of the high-k post-nitridation. TiN thickness and device rotation. A thinner TiN metal gate is found favorable for improved analog characteristics showing an increase in intrinsic voltage gain. The devices where the high-k material is subjected to a nitridation step indicated a degradation of the Early voltage (V(EA)) values which resulted in a lower voltage gain. The 45 degrees rotated devices have a smaller V(EA) than the standard ones when a HfSiO dielectric is used. However, the higher transconductance of these devices, due to the increased mobility in the (1 0 0) sidewall orientation, compensates this V(EA) degradation of the voltage gain, keeping it nearly equal to the voltage gain values of the standard devices. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This work shows a comparison between the analog performance of standard and strained Si n-type triple-gate FinFETs with high-K dielectrics and TiN gate material. Different channel lengths and fin widths are studied. It is demonstrated that both standard and strained FinFETs with short channel length and narrow fins have similar analog properties, whereas the increase of the channel length degrades the early voltage of the strained devices, consequently decreasing the device intrinsic voltage gain with respect to standard ones. Narrow strained FinFETs with long channel show a degradation of the Early voltage if compared to standard ones suggesting that strained devices are more subjected to the channel length modulation effect. (C) 2008 Elsevier Ltd. All rights reserved.