982 resultados para Physical distribution of goods
Resumo:
Cryosols are permafrost-affected soils whose genesis is dominated by cryogenic processes, resulting in unique macromorphologies, micromorphologies, thermal characteristics, and physical and chemical properties. In addition, these soils are carbon sinks, storing high amounts of organic carbon collected for thousands of years. In the Canadian soil classification, the Cryosolic Order includes mineral and organic soils that have both cryogenic properties and permafrost within 1 or 2 m of the soil surface. This soil order is divided into Turbic, Static and Organic great groups on the basis of the soil materials (mineral or organic), cryogenic properties and depth to permafrost. The great groups are subdivided into subgroups on the basis of soil development and the resulting diagnostic soil horizons. Cryosols are commonly associated with the presence of ground ice in the subsoil. This causes serious problems when areas containing these soils are used for agriculture and construction projects (such as roads, town sites and airstrips). Therefore, where Cryosols have high ice content, it is especially important either to avoid these activities or to use farming and construction methods that maintain the negative thermal balance.
Resumo:
A detailed assessment of the respective roles of production, export, and subsequent preservation of organic carbon (Corg) in the eastern Mediterranean (EMED) sediments during the formation of sapropels remains elusive. Here we present new micropaleontological results for both surface samples taken at several locations in the EMED and last interglacial sapropel S5 from core LC21 in the southeastern Aegean Sea. A strong exponential anticorrelation between relative abundances of the lower photic zone coccolithophore Florisphaera profundain the surface sediments and modern concentrations of chlorophyll a (Chl-a) at the sea surface suggests thatF. profunda percentages can be used to track past productivity changes in the EMED. Prior to S5 deposition, an abrupt and large increase of F. profunda percentages in LC21 coincided (within the multidecadal resolution of the records) with the marked freshening of EMED surface waters. This suggests a strong coupling between freshwater-bound surface to intermediate water (density) stratification and enhanced upward advection of nutrients to the base of the photic zone, fuelling a productive deep chlorophyll maximum (DCM) underneath a nutrient-starved surface layer. Our findings imply that (at least) at the onset of sapropel formation physical and biogeochemical processes likely operated in tandem, enabling high Corg accumulation at the seafloor.
Resumo:
With near-complete replacement of Arctic multi-year ice (MYI) by first-year ice (FYI) predicted to occur within this century, it remains uncertain how the loss of MYI will impact the abundance and distribution of sea ice associated algae. In this study we compare the chlorophyll a (chl a) concentrations and physical properties of MYI and FYI from the Lincoln Sea during 3 spring seasons (2010-2012). Cores were analysed for texture, salinity, and chl a. We identified annual growth layers for 7 of 11 MYI cores and found no significant differences in chl a concentration between the bottom first-year-ice portions of MYI, upper old-ice portions of MYI, and FYI cores. Overall, the maximum chl a concentrations were observed at the bottom of young FYI. However, there were no significant differences in chl a concentrations between MYI and FYI. This suggests little or no change in algal biomass with a shift from MYI to FYI and that the spatial extent and regional variability of refrozen leads and younger FYI will likely be key factors governing future changes in Arctic sea ice algal biomass. Bottom-integrated chl a concentrations showed negative logistic relationships with snow depth and bulk (snow plus ice) integrated extinction coefficients; indicating a strong influence of snow cover in controlling bottom ice algal biomass. The maximum bottom MYI chl a concentration was observed in a hummock, representing the thickest ice with lowest snow depth of this study. Hence, in this and other studies MYI chl a biomass may be under-estimated due to an under-representation of thick MYI (e.g., hummocks), which typically have a relatively thin snowpack allowing for increased light transmission. Therefore, we suggest the on-going loss of MYI in the Arctic Ocean may have a larger impact on ice-associated production than generally assumed.