341 resultados para Photogrammetry
Resumo:
INTRODUÇÃO: A utilização da fotogrametria computadorizada em prol da goniometria, ou vice-versa, na prática clínica ainda necessita de fundamentações consistentes. OBJETIVOS: Os objetivos deste estudo foram: verificar a confiabilidade inter e intraexaminadores avaliadores na quantificação das medidas angulares obtidas a partir da fotogrametria computadorizada e a goniometria e determinar a confiabilidade paralela entre esses dois diferentes instrumentos de avaliação. MATERIAIS E MÉTODOS: 26 voluntários e 4 examinadores foram utilizados no estudo. A coleta foi realizada em 4 etapas sequenciais: demarcação dos pontos anatômicos de referência, mensuração e registro dos valores goniométricos, captação da imagem do voluntário com os marcadores fixados no corpo e avaliação do registro fotográfico no programa ImageJ. RESULTADOS: O goniômetro é um instrumento confiável na maioria das evidências, porém, a confiabilidade das medições depende principalmente da uniformização dos procedimentos. Considerações metodológicas relativas ao estabelecimento de confiabilidade e padronização da colocação dos marcadores se fazem necessárias, de modo a oferecer opções de avaliação ainda mais confiáveis para a prática clínica. CONCLUSÃO: Ambos os instrumentos são confiáveis e aceitáveis, porém, mais evidências ainda são necessárias para suportar a utilização desses instrumentos, pois poucos pesquisadores têm utilizado o mesmo desenho de estudo, e a comparação dos resultados entre eles muitas vezes são difíceis.
Resumo:
Image orientation is a basic problem in Digital Photogrammetry. While interior and relative orientations were succesfully automated, the same can not be said about absolute orientation. This process can be automated by using an approach based on relational matching and a heuristic that uses the analytical relation between straight features in the object space and its homologous in the image space. A build-in self-diagnosis is also used in this method, that is based on the implementation of data snooping statistic test in the process of spatial resection, using the Iterated Extended Kalman Filtering (IEKF). The aim of this paper is to present the basic principles of the proposed approach and results based on real data.
Resumo:
The identification of ground control on photographs or images is usually carried out by a human operator, who uses his natural skills to make interpretations. In Digital Photogrammetry, which uses techniques of digital image processing extraction of ground control can be automated by using an approach based on relational matching and a heuristic that uses the analytical relation between straight features of object space and its homologous in the image space. A build-in self-diagnosis is also used in this method. It is based on implementation of data snooping statistic test in the process of spatial resection using the Iterated Extended Kalman Filtering (IEKF). The aim of this paper is to present the basic principles of the proposed approach and results based on real data.
Resumo:
Geometric accuracy of a close-range photogrammetric system is assessed in this paper considering surface reconstruction with structured light as its main purpose. The system is based on an off-the-shelf digital camera and a pattern projector. The mathematical model for reconstruction is based on the parametric equation of the projected straight line combined with collinearity equations. A sequential approach for system calibration was developed and is presented. Results obtained from real data are also presented and discussed. Experiments with real data using a prototype have indicated 0.5mm of accuracy in height determination and 0.2mm in the XY plane considering an application where the object was 1630mm distant from the camera.
Resumo:
An approach using straight lines as features to solve the photogrammetric space resection problem is presented. An explicit mathematical model relating straight lines, in both object and image space, is used. Based on this model, Kalman Filtering is applied to solve the space resection problem. The recursive property of the filter is used in an iterative process which uses the sequentially estimated camera location parameters to feedback to the feature extraction process in the image. This feedback process leads to a gradual reduction of the image space for feature searching, and consequently eliminates the bottleneck due to the high computational cost of the image segmentation phase. It also enables feature extraction and the determination of feature correspondence in image and object space in an automatic way, i.e., without operator interference. Results obtained from simulated and real data show that highly accurate space resection parameters are obtained as well as a progressive processing time reduction. The obtained accuracy, the automatic correspondence process, and the short related processing time show that the proposed approach can be used in many real-time machine vision systems, making possible the implementation of applications not feasible until now.
Resumo:
One of the main problems in Computer Vision and Close Range Digital Photogrammetry is 3D reconstruction. 3D reconstruction with structured light is one of the existing techniques and which still has several problems, one of them the identification or classification of the projected targets. Approaching this problem is the goal of this paper. An area based method called template matching was used for target classification. This method performs detection of area similarity by correlation, which measures the similarity between the reference and search windows, using a suitable correlation function. In this paper the modified cross covariance function was used, which presented the best results. A strategy was developed for adaptative resampling of the patterns, which solved the problem of deformation of the targets due to object surface inclination. Experiments with simulated and real data were performed in order to assess the efficiency of the proposed methodology for target detection. The results showed that the proposed classification strategy works properly, identifying 98% of targets in plane surfaces and 93% in oblique surfaces.
Resumo:
The aim of this paper is to present a photogrammetric method for determining the dimensions of flat surfaces, such as billboards, based on a single digital image. A mathematical model was adapted to generate linear equations for vertical and horizontal lines in the object space. These lines are identified and measured in the image and the rotation matrix is computed using an indirect method. The distance between the camera and the surface is measured using a lasermeter, providing the coordinates of the camera perspective center. Eccentricity of the lasermeter center related to the camera perspective center is modeled by three translations, which are computed using a calibration procedure. Some experiments were performed to test the proposed method and the achieved results are within a relative error of about 1 percent in areas and distances in the object space. This accuracy fulfills the requirements of the intended applications. © 2005 American Society for Photogrammetry and Remote Sensing.
Resumo:
Several kinds of research in road extraction have been carried out in the last 6 years by the Photogrammetry and Computer Vision Research Group (GPF&VC - Grupo de Pesquisa em Fotogrametria e Visão Computacional). Several semi-automatic road extraction methodologies have been developed, including sequential and optimizatin techniques. The GP-F&VC has also been developing fully automatic methodologies for road extraction. This paper presents an overview of the GP-F&VC research in road extraction from digital images, along with examples of results obtained by the developed methodologies.
Resumo:
This article presents an automatic methodology for extraction of road seeds from high-resolution aerial images. The method is based on a set of four road objects and another set of connection rules among road objects. Each road object is a local representation of an approximately straight road fragment and its construction is based on a combination of polygons describing all relevant image edges, according to some rules embodying road knowledge. Each one of the road seeds is composed by a sequence of connected road objects, in which each sequence of this type can be geometrically structured as a chain of contiguous quadrilaterals. Experiments carried out with high-resolution aerial images showed that the proposed methodology is very promising in extracting road seeds. This article presents the fundamentals of the method and the experimental results, as well.
Resumo:
The auto-radiography is a photographic method to registrate in sensitive emulsion the spatial distribution a rays emitted by radioisotopes of a sample or an object. The auto-radiography was applied to detect the presence of radioactive minerals in some samples of schists and gneisses from the Ticunzal Formation, Northeast Goiás State, aiming to implement the use of this technique in LABIDRO - Hydrochemistry and Isotopes Laboratory of the Department of Petrology and Metallogenesis, State University of São Paulo/Campus of Rio Claro.
Resumo:
The purpose of this paper is to introduce a methodology for semi-automatic road extraction from aerial digital image pairs by using dynamic programming and epipolar geometry. The method uses both images from where each road feature pair is extracted. The operator identifies the corresponding road featuresand s/he selects sparse seed points along them. After all road pairs have been extracted, epipolar geometry is applied to determine the automatic point-to-point correspondence between each correspondent feature. Finally, each correspondent road pair is georeferenced by photogrammetric intersection. Experiments were made with rural aerial images. The results led to the conclusion that the methodology is robust and efficient, even in the presence of shadows of trees and buildings or other irregularities.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)