924 resultados para Phase change materials (PCM)
Resumo:
Radar refractivity retrievals can capture near-surface humidity changes, but noisy phase changes of the ground clutter returns limit the accuracy for both klystron- and magnetron-based systems. Observations with a C-band (5.6 cm) magnetron weather radar indicate that the correction for phase changes introduced by local oscillator frequency changes leads to refractivity errors no larger than 0.25 N units: equivalent to a relative humidity change of only 0.25% at 20°C. Requested stable local oscillator (STALO) frequency changes were accurate to 0.002 ppm based on laboratory measurements. More serious are the random phase change errors introduced when targets are not at the range-gate center and there are changes in the transmitter frequency (ΔfTx) or the refractivity (ΔN). Observations at C band with a 2-μs pulse show an additional 66° of phase change noise for a ΔfTx of 190 kHz (34 ppm); this allows the effect due to ΔN to be predicted. Even at S band with klystron transmitters, significant phase change noise should occur when a large ΔN develops relative to the reference period [e.g., ~55° when ΔN = 60 for the Next Generation Weather Radar (NEXRAD) radars]. At shorter wavelengths (e.g., C and X band) and with magnetron transmitters in particular, refractivity retrievals relative to an earlier reference period are even more difficult, and operational retrievals may be restricted to changes over shorter (e.g., hourly) periods of time. Target location errors can be reduced by using a shorter pulse or identified by a new technique making alternate measurements at two closely spaced frequencies, which could even be achieved with a dual–pulse repetition frequency (PRF) operation of a magnetron transmitter.
Resumo:
Annular flow is the prevailing pattern in transport and energy conversion systems and therefore, one of the most important patterns in multiphase flow in ducts. The correct prediction of the pressure gradient and heat transfer coefficient is essential for optimizing the system s capacity. The objective of this work is to develop and implement a numerical algorithm capable of predicting hydrodynamic and thermal characteristics for upflow, vertical, annular flow. The numerical algorithm is then complemented with the physical modeling of phenomena that occurs in this flow pattern. These are, turbulence, entrainment and deposition and phase change. For the development of the numerical model, axial diffusion of heat and momentum is neglected. In this way the time-averaged equations are solved in their parabolic form obtaining the velocity and temperature profiles for each axial step at a time, together with the global parameters, namely, pressure gradient, mean film thickness and heat transfer coefficient, as well as their variation in the axial direction. The model is validated for the following conditions: fully-developed laminar flow with no entrainment; fully developed laminar flow with heat transfer, fully-developed turbulent flow with entrained drops, developing turbulent annular flow with entrained drops, and turbulent flow with heat transfer and phase change
Resumo:
This article presents a cooling system for cutting tool in turning based in a toolholder with cooling fluid flowing inside its body being that this fluid must necessarily be able to phase change due to heat generated from machining processes. In this way, the fluid evaporates just under the cutting tool allowing a heat transfer more efficient than if were used a fluid without phase change once the latent heat of evaporation is beneficial for removal heat. Following, the cooling fluid evaporated passes through a condenser located out of the toolholder where it is condensated and returns to the toolholder again and a new cycle is started. In this study, the R-123, a hydrochlorofluorocarbon (HCFC) fluid, was selected for the turning of a Cr-Ni-Nb-Mn-N austenitic steel of hard machinability. The machining tests were carried out under three different machining conditions: dry machining, external cutting fluid (conventional method), and with the toolholder proposed. As result, the developed system allows a surface roughness up to 10% better than dry machining and a tool life close to the conventional method, but 32% superior to dry machining; moreover, there are environmental and economics advantages once the cooling fluid is maintained in a loop circuit.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Sharp transitions are perhaps absent in QCD, so that one looks for physical quantities which may reflect the phase change. One such quantity is the sound velocity which was shown in lattice theory to become zero at the transition point for pure glue. We show that even in a simple bag model the sound velocity goes to zero at temperature T = T(v) not-equal 0 and that the numerical value of this T(v) depends on the nature of the meson. The average thermal energy of mesons goes linearly with T near T(v), with much smaller slope for the pion. The T(v) - s can be connected with the Boltzmann temperatures obtained from transverse momentum spectrum of these mesons in heavy-ion collision at mid-rapidity. It would be interesting to check the presence of different T(v) - s in present day finite T lattice theory.
Resumo:
NiWO4 and ZnWO4 were synthesized by the polymeric precursor method at low temperatures with zinc or nickel carbonate as secondary phase. The materials were characterized by thermal analysis (TG/DTA), infrared spectroscopy, UV-Vis spectroscopy and X-ray diffraction. NiWO4 was crystalline after calcination at 350 A degrees C/12 h while ZnWO4 only crystallized after calcination at 400 A degrees C for 2 h. Thermal decomposition of the powder precursor of NiWO4 heat treated for 12 h had one exothermic transition, while the precursor heat treated for 24 h had one more step between 600 and 800 A degrees C with a small mass gain. Powder precursor of ZnWO4 presented three exothermic transitions, with peak temperatures and mass losses higher than NiWO4 has indicating that nickel made carbon elimination easier.
Resumo:
Despite its importance for designing evaporators and condensers, a review of the literature shows that heat transfer data during phase change of carbon dioxide is very limited, mainly for microchannel flows. In order to give a contribution on this subject, an experimental study of CO 2 evaporation inside a 0.8 mm-hydraulic diameter microchannel was performed in this work. The average heat transfer coefficient along the microchannel was measured and visualization of the flow patterns was conducted. A total of 67 tests were performed at saturation temperature of 23.3°C for a heat flux of 1800 W/(m2°C). Vapor qualities ranged from 0.005 to 0.88 and mass flux ranged from 58 to 235 kg/(m2s). An average heat transfer coefficient of 9700 W/(m2°C) with a standard deviation of 35% was obtained. Nucleate boiling was found to characterize the flow regime for the test conditions. The dryout of the flow, characterized by the sudden reduction in the heat transfer coefficient, was identified at vapor qualities around 0.85. Flow visualization results showed three flow patterns. For low vapor qualities (up to about 0.25), plug flow was predominant, while slug flow occurred at moderated vapor qualities (from about 0.25 to 0.50). Annular flow was the flow pattern for higher vapor qualities. Copyright © 2006 by ABCM.
Resumo:
In this work we report our achievements in the elaboration and optical characterizations of low-losses suspended core optical fibers elaborated from As2S3 glass. For preforms elaboration, alternatively to other processes like the stack and draw or extrusion, we use a process based on mechanical drilling. The drawing of these drilled performs into fibers allows reaching a suspended core geometry, in which a 2 μm diameter core is linked to the fiber clad region by three supporting struts. The different fibers that have been drawn show losses close to 0.9 dB/m at 1.55 μm. The suspended core waveguide geometry has also an efficient influence on the chromatic dispersion and allows its management. Indeed, the zero dispersion wavelength, which is around 5 μm in the bulk glass, is calculated to be shifted towards around 2μm in our suspended core fibers. In order to qualify their nonlinearity we have pumped them at 1.995 μm with the help of a fibered ns source. We have observed a strong non linear response with evidence of spontaneous Raman scattering and strong spectral broadening. © 2011 SPIE.
Resumo:
Elaboration of low-losses highly non linear chalcogenide optical fibers for the generation of efficient non linear effects in the infrared remains a challenge. In recent years, much work has been devoted to the study of microstructured optical fibers (MOFs) with different designs and various elaboration processes. Their background losses were typically of several dB/m. © 2011 IEEE.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Este estudo avalia a intercalação de esmectita dioctahédrica do Estado Acre com o sal quaternário de amônio brometo de hexadeciltrimetilamônio (HDTMA) em concentrações compreendidas entre 1 a 5 vezes ao valor de CTC da argila original e sua aplicabilidade na adsorção de fenol e benzeno em fase líquida. Os materiais foram caracterizados por microanálises de difração de raios X, microscopia eletrônica de varredura/espectroscopia com dispersão de energia e espectroscopia na região do infravermelho. Os processos de adsorção foram realizados em sistemas simples e as medidas das concentrações do fenol e benzeno foram efetuadas por espectrofotometria na região ultravioleta. Os resultados indicaram que a intercalação da esmectita com HDTMA propiciou cerca de 78,8% de expansão (variação de d001: 1,47 nm para 1,91 nm) e decréscimo acentuado dos elementos das posições interlamelares, como Na, Ca, Mg e K, acompanhado pela delaminação/esfoliação da argila original. Nos processos de adsorção do fenol e benzeno em HDTMA-arg 5 foram obtidos os seguintes resultados: qMax= 4,44 e 35,8 mg.g-1; KL= 0,076 e 0,115 L.g-1; ΔGº = -16,85 e -18,38 kJ.mol-1, respectivamente. Estes dados indicaram que os processos de adsorção do benzeno e fenol em fase líquida na organoargila HDTMA-arg 5 foram favoráveis, espontâneos e com interações físicas.