974 resultados para Pesticides – organochlorine
Resumo:
La presència de pesticides en el medi ambient pot comportar efectes nocius pel propi medi i la salut humana, fet que, en alguns casos, converteix en necessària la seva eliminació. Un dels mètodes utilitzats per dur a terme aquesta eliminació és la sorció de contaminats sobre materials adsorbents. Per tal de fer d’aquest mètode un procés sostenible cal investigar nous materials capaços de retenir els contaminants. El suro és la part més externa de l’escorça de l’alzina surera: Quercus Suber L. S’extreu cada 5- 10 anys depenent de la regió i es caracteritza per ser una font natural, renovable i biodegradable amb una heterogènia composició química que el converteix en un material potencialment apte com a adsorbent d’un ampli rang de contaminants. En aquest context, l’objectiu principal d’aquest treball és investigar l’afinitat d’adsorció del suro amb quatre pesticides de diferent hidrofobicitat i estructura química i estudiar el paper que hi juguen els seus compostos químics (extractius, suberina, lignina i polisacàrids) en aquest procés de sorció. Els pesticides investigats han estat: Metamitron: poc hidrofòbic (logKow = 0.83) i de caràcter molecular, Alaclor: moderadament hidrofòbic (logKow = 2.80) i de caràcter iònic (pKa = 0.62), 2,4-D: moderadament hidrofòbic (logKow = 2.81) i de caràcter iònic (pKa = 2.64) i Clorpirifos: molt hidrofòbic (logKow = 4.92) i de caràcter molecular
Resumo:
Ecosystems are complex systems and changing one of their components can alter their whole functioning. Decomposition and biodiversity are two factors that play a role in this stability, and it is vital to study how these two factors are interrelated and how other factors, whether of human origin or not, can affect them. This study has tested different hypotheses regarding the effects of pesticides and invasive species on the biodiversity of the soil fauna and litter decomposition rate. Decomposition was measured using the litterbags technique. Our results indicate that pesticides had a negative effect on decomposition whereas invasive species increased decomposition rate. At the same time, the diversity of the soil biota was unaffected by either factor. These results allow us to better understand the response of important ecosystem functions to human‐induced alterations, in order to mitigate harmful effects or restore them wherever necessary.
Resumo:
The Pesticide Poisoning Surveillance Program within the Division of ADPER & EH monitors, collects, and analyzes pesticide poisonings to determine the extent to which Iowans are being affected by pesticide exposure. The information gathered by this program is disseminated to governmental agencies, the public, and health care professionals. In addition, IDPH is required to submit its findings annually to the Iowa Department of Agriculture and Land Stewardship (IDALS).
Resumo:
Sediment contamination is evaluated by determining organic micropollutants (organochlorine compounds - OCs and polycyclic aromatic hydrocarbons - PAHs) in two important Brazilian water reservoirs. Trace levels of OCs were observed in the Santana reservoir (44.8 ng g-1 d.w. of p,p'-DDT), while in the Funil reservoir the levels were below detection level. Forty-eight percent of the found sigmaocs were polychlorinated biphenyls, 29% dichlorodiphenyltrichloroethane (DDT), 18% Drins, and 5% other pesticides (HCB, Heptachlor, Heptachlor-epoxide, gamma-HCH and a-Endosulfan). We observed lower levels of sigmaPAH in the Funil reservoir (1 to 275 ng g-1d.w.) than in the Santana reservoir (2.2 to 26.7 µg g-1 d.w.).
Resumo:
Marine mammals are exposed to persistent organic pollutants (POPs), which may be biotransformed to metabolites some of which are highly toxic. Both POPs and their metabolites may lead to adverse health effects, which have been studied using various biomarkers. Changes in endocrine homeostasis have been suggested to be sensitive biomarkers for contaminant-related effects. The overall objective of this doctoral thesis was to investigate biotransformation capacity of POPs and their potential endocrine disruptive effects in two contrasting ringed seal populations from the low contaminated Svalbard area and from the highly contaminated Baltic Sea. Biotransformation capacity was studied by determining the relationships between congener-specific patterns and concentrations of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs) and their hydroxyl (OH)- and/or methylsulfonyl (MeSO2)-metabolites, and catalytic activities of hepatic xenobiotic-metabolizing phase I and II enzymes. The results suggest that the biotransformation of PCBs, PBDEs and toxaphenes in ringed seals depends on the congener-specific halogen-substitution pattern. Biotransformation products detected in the seals included OH-PCBs, MeSO2-PCBs and –DDE, pentachlorophenol, 4-OHheptachlorostyrene, and to a minor extent OH-PBDEs. The effects of life history state (moulting and fasting) on contaminant status and potential biomarkers for endocrine disruption, including hormone and vitamin homeostasis, were investigated in the low contaminated ringed seal population from Svalbard. Moulting/fasting status strongly affected thyroid, vitamin A and calcitriol homeostasis, body condition and concentrations of POPs and their OH-metabolites. In contrast, moulting/fasting status was not associated with variations in vitamin E levels. Endocrine disruptive effects on multiple endpoints were investigated in the two contrasting ringed seal populations. The results suggest that thyroid, vitamin A and calcitriol homeostasis may be affected by the exposure of contaminants and/or their metabolites in the Baltic ringed seals. Complex and non-linear relationships were observed between the contaminant levels and the endocrine variables. Positive relationships between circulating free and total thyroid hormone concentration ratios and OH-PCBs suggest that OH-PCBs may mediate the disruption of thyroid hormone transport in plasma. Species differences in thyroid and bone-related effects of contaminants were studied in ringed and grey seals from low contaminated references areas and from the highly contaminated Baltic Sea. The results indicate that these two species living at the same environment approximately at the same trophic level respond in a very different way to contaminant exposure. The results of this thesis suggest that the health status of the Baltic ringed seals has still improved during the last decade. PCB and DDE levels have decreased in these seals and the contaminant-related effects are different today than a decade ago. The health of the Baltic ringed seals is still suggested to be affected by the contaminant exposure. At the present level of the contaminant exposure the Baltic ringed seals seem to be at a zone where their body is able to compensate for the contaminant-mediated endocrine disruption. Based on the results of this thesis, several recommendations that could be applied on monitoring and assessing risk for contaminant effects are provided. Circulating OH-metabolites should be included in monitoring and risk assessment programs due to their high toxic potential. It should be noted that endogenous variables may have complex and highly variable responses to contaminant exposure including non-linear responses. These relationships may be further confounded by life history status. Therefore, it is highly recommended that when using variables related to endocrine homeostasis to investigate/monitor or assess the risk of contaminant effects in seals, the life history status of the animal should be carefully taken into consideration. This applies especially when using thyroid, vitamin A or calcitriolrelated parameters during moulting/fasting period. Extrapolations between species for assessing risk for contaminant effects in phocid seals should be avoided.
Resumo:
Electrochemical behavior of pesticides is extensively studied, but little attention has been given to the study of their degradation products (by-products) by electrochemical methods. However, the degradation products of pesticides can be even more toxic then the parent products and such studies should be encouraged. Therefore, the objective of this work was to evaluate the electroactivity of by-products of imazaquin, methylparathion, bentazon and atrazine, generated by UV irradiation and measured using cyclic and differential pulse voltammetry and UV-visible absorption spectrophotometry. Results have shown that several by-products exhibit electroactivity, allowing, in some cases, the simultaneous determination of both parent and degradation products.
Resumo:
A method based on headspace - solid phase microextraction coupled with gas chromatography - mass spectrometry was validated for the quantitative determination of 18 organochlorine pesticides in water. For the extraction conditioning some parameters as the best type of coating fiber, time and temperature of extraction, pH and ionic strength were evaluated. The method HS-SPME/GC-MS/MS showed linear coefficient above 0.9948. The repeatability of the measurements were lower than 7.6%. Relative recoveries were between 88 and 110%. Limits of detection from 0.5 x 10-3 to 1.0 mg L-1 were obtained. A total of 31 samples were analyzed and 16 presented from 1 to 5 pesticides.
Resumo:
This work evaluated the use of the Hildebrand/Hansen solubility parameters for selection of solvents for extraction of the organochlorine pesticides pp' DDT, pp' DDE, Aldrin and a-Endossulfan from soil using columns packed with Al2O3. The mixtures hexane:dichloromethane (7:3; v/v), hexane:acetonitrile (1:1; v/v), hexane:acetone (1:1; v/v) and pure hexane were chosen as extracting solutions. In the addition and recovery tests, different extraction solutions provided high recoveries percentages (>75%) with coefficients of variation below 15%. The recoveries are in agreement with the Hildebrand/Hansen parameters, demonstrating its applicability in the selection of extracting solution and in the replacement of toxic solvents, as dichloromethane
Resumo:
This work reports the chemical characterization of Eremanthusgoyzensis essential oil and its toxic effect over Brevipalpus phoenicis. The essential oil displayed a major composition of sesquiterpenes (61.87%) including trans-caryophillene (26.81%) and germacrene-D (13.31%). The fumigation test indicated a promising bioactivity over adult B. phoenicis individuals at 24 h (2.03 µL/L of air) and 48 h (1.08 µL/L of air) of exposition. A brief discussion of essential oils composition and their singular role on the toxic effect over B. phoenicis is provided here. Our results may contribute to a new and profitable use of a species of Brazilian flora on agribusiness.
Resumo:
The efficiency of XAD®-2 resin in sampling the pesticides α and β-endosulfan from air contaminated in the laboratory was evaluated. Sampling efficiency ranged from 87 to 108% for α-endosulfan and from 71 to 84% for β-endosulfan with relative standard deviation lower than 19%. The pesticides were not detected in the second section of the cartridge showing the good retention capacity of XAD®-2 for these analytes. Method quantification limits were 0.32 and 0.34 µg m-3 for α and β-endosulfan, respectively. These results suggest that the proposed method may be useful for evaluating occupational exposure to these compounds.
Resumo:
Several automated reversed-phase HPLC methods have been developed to determine trace concentrations of carbamate pesticides (which are of concern in Ontario environmental samples) in water by utilizing two solid sorbent extraction techniques. One of the methods is known as on-line pre-concentration'. This technique involves passing 100 milliliters of sample water through a 3 cm pre-column, packed with 5 micron ODS sorbent, at flow rates varying from 5-10 mUmin. By the use of a valve apparatus, the HPLC system is then switched to a gradient mobile phase program consisting of acetonitrile and water. The analytes, Propoxur, Carbofuran, Carbaryl, Propham, Captan, Chloropropham, Barban, and Butylate, which are pre-concentrated on the pre-column, are eluted and separated on a 25 cm C-8 analytical column and determined by UV absorption at 220 nm. The total analytical time is 60 minutes, and the pre-column can be used repeatedly for the analysis of as many as thirty samples. The method is highly sensitive as 100 percent of the analytes present in the sample can be injected into the HPLC. No breakthrough of any of the analytes was observed and the minimum detectable concentrations range from 10 to 480 ng/L. The developed method is totally automated for the analysis of one sample. When the above mobile phase is modified with a buffer solution, Aminocarb, Benomyl, and its degradation product, MBC, can also be detected along with the above pesticides with baseline resolution for all of the analytes. The method can also be easily modified to determine Benomyl and MBC both as solute and as particulate matter. By using a commercially available solid phase extraction cartridge, in lieu of a pre-column, for the extraction and concentration of analytes, a completely automated method has been developed with the aid of the Waters Millilab Workstation. Sample water is loaded at 10 mL/min through a cartridge and the concentrated analytes are eluted from the sorbent with acetonitrile. The resulting eluate is blown-down under nitrogen, made up to volume with water, and injected into the HPLC. The total analytical time is 90 minutes. Fifty percent of the analytes present in the sample can be injected into the HPLC, and recoveries for the above eight pesticides ranged from 84 to 93 percent. The minimum detectable concentrations range from 20 to 960 ng/L. The developed method is totally automated for the analysis of up to thirty consecutive samples. The method has proven to be applicable to both purer water samples as well as untreated lake water samples.
Resumo:
Une nouvelle méthode d'extraction en phase solide (SPE) couplée à une technique d'analyse ultrarapide a été développée pour la détermination simultanée de neuf contaminants émergents (l'atrazine, le déséthylatrazine, le 17(béta)-estradiol, l'éthynylestradiol, la noréthindrone, la caféine, la carbamazépine, le diclofénac et le sulfaméthoxazole) provenant de différentes classes thérapeutiques et présents dans les eaux usées. La pré-concentration et la purification des échantillons a été réalisée avec une cartouche SPE en mode mixte (Strata ABW) ayant à la fois des propriétés échangeuses de cations et d'anions suivie d'une analyse par une désorption thermique par diode laser/ionisation chimique à pression atmosphérique couplée à la spectrométrie de masse en tandem (LDTD-APCI-MS/MS). La LDTD est une nouvelle méthode d'introduction d'échantillon qui réduit le temps total d'analyse à moins de 15 secondes par rapport à plusieurs minutes avec la chromatographie liquide couplée à la spectrométrie de masse en tandem traditionnelle (LC-MS/MS). Plusieurs paramètres SPE ont été évalués dans le but d'optimiser l'efficacité de récupération lors de l'extraction des analytes provenant des eaux usées, tels que la nature de la phase stationnaire, le débit de chargement, le pH d'extraction, le volume et la composition de la solution de lavage et le volume de l'échantillon initial. Cette nouvelle méthode a été appliquée avec succès à de vrais échantillons d'eaux usées provenant d'un réservoir de décantation primaire. Le recouvrement des composés ciblés provenant des eaux usées a été de 78 à 106%, la limite de détection a été de 30 à 122 ng L-1, alors que la limite de quantification a été de 88 à 370 ng L-1. Les courbes d'étalonnage dans les matrices d'eaux usées ont montré une bonne linéarité (R2 > 0,991) pour les analytes cibles ainsi qu’une précision avec un coefficient de variance inférieure à 15%.