917 resultados para Pesticide Residues
Resumo:
An immunoaffinity chromatographic (IAC) method for the selective extraction and concentration of 13 organophosphorus pesticides (OPs, including coumaphos, parathion, phoxim, quinalphos, dichlofenthion, triazophos, azinphos-ethyl, phosalone, isochlorthion, parathion-methyl, cyanophos, disulfoton, and phorate) prior to analysis by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was developed. The IAC column was prepared by covalently immobilizing a monoclonal antibody with broad specificity for OPs on CNBr-activated Sephrose 4B. The column capacity ranged from 884 to 2641 ng/mL of gel. The optimum elution solvent was 0.01 M phosphate-buffered saline containing 80% methanol. The breakthrough volume of the IAC column was found to be 400 mL. Recoveries of OPs from spiked environmental samples by IAC cleanup and HPLC-MS/MS analysis ranged from 60.2 to 107.1%, with a relative standard deviation below 11.1%. The limit of quantitation for 13 OPs ranged from 0.01 to 0.13 ng/mL (ng/g). The application of IAC cleanup coupled to HPLC-MS/MS in real environmental samples demonstrated the potential of this method for the determination of OP residues in environmental samples at trace levels.
Resumo:
An analytical procedure using supercritical fluid extraction (SFE) and capillary gas chromatography with electron-capture detection was developed to determine simultaneously residues of different pesticides (organochlorine, organophosphorus, organonitrogen and pyrethroid) in honey samples. Fortification experiments were conducted to test conventional extraction (liquid-liquid) and optimize the extraction procedure in SFE by varying the CO2-modifier, temperature, extraction time and pressure. Best efficiency was achieved at 400 bar using acetonitrile as modifier at 90 degreesC. For the clean-up step, Florisil cartridges were used for both methods LLE and SFE. Recoveries for majority of pesticides from fortified samples of honey at fortification level of 0.01-0.10 mg/kg ranged 75-94% from both methods. Limits of detection found were less than 0.01 mg/kg for ECD and confirmation of pesticide identity was performed by gas chromatography-mass spectrometry in selected-ion monitoring mode. The multiresidue methods in real honey samples were applied and the results of developed methods were compared. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A gas chromatography-mass-selective (GC-MS) detection method to determine buprofezin, pyridaben, and tebufenpyrad on the pulp, peel, and whole fruit of clementines is described. The extraction/partition procedure was performed in one step and no cleanup was necessary with the GC-MS in the SIM-mode pesticide determination. Recovery ranged from 75 to 124% with coefficients of variance ranging between 1 and 13%. The limit of determination was 0.01 mg/kg for all pesticides. The field trials showed a similar degradative behavior for all active ingredients (AI), with a great residue decrease during the first week and stability in the second. Just after treatment buprofezin and tebufenpyrad showed lower residues than the maximum residue limit (MRL) fixed in Italy, while pyridaben was below the MRL after a week.
Resumo:
An amperometric biosensor based on cholinesterase (ChE) has been used for the determination of selected carbamate insecticides in vegetable samples. The linear range of the biosensor for the N-methylcarbamates (aldicarb, carbaryl, carbofuran, methomyl and propoxur) varied from 5 x 10(-5) to 50 mg kg(-1). Limits of detection were calculated on the basis that the ChE enzymes were 10% inhibited and varied, depending of the combination ChE (as acetyl- or butyrylcholinesterase) vs. inhibitor (pesticide), from 1 x 10(-4) to 3.5 mg kg(-1). The biosensor-based carbamate determination was compared to liquid chromatography/UV methods. Three vegetable samples were spiked with carbofuran and propoxur at 125 mu g kg(-1) followed by conventional procedures. Good correlations were observed for carbofuran in the vegetable extracts (79, 96 and 91% recoveries for potato, carrot and sweet pepper, respectively), whereas for propoxur unsatisfactory results were obtained. Potato and carrot samples were spiked with 10, 50 and 125 mu g kg(-1) carbofuran, followed by direct determination by the amperometric biosensor. The fortified sampler; resulted in very high inhibition values, and recoveries were: 28, 34 and 99% for potato, and 140, 90 and 101% for carrot, respectively, at these three fortification levels. (C) 1998 Elsevier B.V. B.V.
Resumo:
This study is aimed at evaluating the sublethal effects of endosulfan (EDS) in juvenile common carp (Cyprinus carpio). For this purpose, fish were exposed for 15 days to the technical EDS (95% pure) diluted in dimethyl sulfoxide (DMSO) 0.1% of the total volume in water solution in a semi-static system at sublethal concentration (1 mu g/L). Subsequently, the liver somatic index (LSI) and factor condition (K) were determined. The total cytocrome P450 (CYP), CYP1A isoform, and the ethoxyresorufin-O-deethylase (EROD) activity were determined from the hepatic microsomal fraction as well as the activity of the oxidative stress enzyme system such as superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione peroxidase (GP(X)), glutathione reductase (GR), and glucose-6-phosphate dehydrogenase (G6PDH). Among the parameters assessed, EDS at the sublethal concentration in subchronic exposure caused significant changes in liver somatic indices as well as induction of the phase I biotransformation system and oxidative stress in juvenile common carp (Cyprinus carpio). Thus, it is seen that the use of biochemical biomarkers of environmental contamination in this study proved to be an extremely important tool for detecting the adverse effects of xenobiotics in the aquatic environment, even at low concentration.
Resumo:
ABSTRACT: Organic residues from sugarcane crop and processing (vinasse, boiler ash, cake filter, and straw) are commonly applied or left on the soil to enhance its fertility. However, they can influence pesticide degradation and sorption. The objective of this study was to assess the effect of adding these organic residues on the degradation and sorption of fipronil and atrazine in two soils of the State of Mato Grosso do Sul, MS, Brazil. The degradation experiment was carried out with laboratory-incubated (40 days; 28°C; 70% field capacity) soils (0-10cm). The batch equilibration method was used to determine sorption. Fipronil (half-life values of 15-105 days) showed to be more persistent than atrazine (7-17 days). Vinasse application to the soil favored fipronil and atrazine degradation, whereas cake filter application decreased the degradation rates for both pesticides. Values for sorption coefficients (Kd) were determined for fipronil (5.1-13.2mL g-1) and atrazine (0.5-1.5mL g-1). Only straw and cake filter residues enhanced fipronil sorption when added to the soil, whereas all sugarcane residues increased atrazine sorption. RESUMO: Resíduos orgânicos do cultivo e processamento da cana-de-açúcar (vinhaça, cinzas, torta de filtro e palha) são usualmente aplicados ou deixados no solo para aumentar sua fertilidade, mas eles podem influenciar na degradação e sorção de agrotóxicos. O objetivo deste estudo foi avaliar o efeito da adição desses resíduos orgânicos no solo sobre a degradação e sorção do fipronil e da atrazina em dois solos no Estado de Mato Grosso do Sul, MS, Brasil. O experimento de degradação foi realizado com solos (0-10cm) incubados em laboratório (40 dias; 28°C; 70% da capacidade de campo). Para determinar a sorção, foi usado o método da batelada. Fipronil mostrou ser mais persistente (valores de meia-vida entre 15-105 dias) que atrazina (7-17 dias). O solo com adição de vinhaça favoreceu a degradação de fipronil e atrazina, enquanto adição da torta de filtro desacelerou o processo. Os valores do coeficiente de sorção (Kd) foram determinados para fipronil (5,1-13,2mL g-1) e atrazina (0,5-1,5mL g-1). Apenas os resíduos palha e torta de filtro aumentaram a sorção de fipronil quando adicionados ao solo, enquanto todos os resíduos aumentaram a sorção de atrazina.
Resumo:
2008
Resumo:
The presence of calcium hydroxide (Ca(OH)2) in Bayer residue slurry inhibits the effectiveness of the seawater neutralisation process to reduce the pH and aluminium concentration in the residue. An increase in the slurry pH (reversion), after seawater neutralisation, is caused by the dissolution of calcium hydroxide and hydrocalumite (solid components found in bauxite refinery residue). Reversion was not observed when the final solution pH was greater than 10.5, due to hydrocalumite being in a state of equilibrium at high pH. Hydrocalumite has been found to form during the neutralisation process when high concentrations of calcium hydroxide are present in the residue liquor. The dissolution of hydrocalumite releases hydroxyl (OH-) and aluminium ions back into solution after the seawater neutralisation (SWN) process, which causes pH and aluminium reversion to occur. This investigation looks at the effect of Ca(OH)2 and subsequently hydrocalumite on the pH and aluminium concentration in bauxite refinery residue liquors after the SWN process.
Resumo:
Water resources are known to contain radioactive materials, either from natural or anthropogenic sources. Treatment, including wastewater treatment, of water for drinking, domestic, agricultural and industrial purposes has the potential to concentrate radioactive materials. Inevitably concentrated radioactive material is discharged to the environment as a waste product, reused for soil conditioning, or perhaps recycled as a new potable water supply. This thesis, presented as a collection of peer reviewed scientific papers, explores a number of water / wastewater treatment applications, and the subsequent nature and potential impact of radioactive residues associated with water exploitation processes. The thesis draws together research outcomes for sites predominantly throughout Queensland, Australia, where it is recognised that there is a paucity of published data on the subject. This thesis contributes to current knowledge on the monitoring, assessment and potential for radiation exposure from radioactive residues associated with the water industry.
Resumo:
DegP, a member of the HtrA family of proteins, conducts critical bacterial protein quality control by both chaperone and proteolysis activities. The regulatory mechanisms controlling these two distinct activities, however, are unknown. DegP activation is known to involve a unique mechanism of allosteric binding, conformational changes and oligomer formation. We have uncovered a novel role for the residues at the PDZ1:protease interface in oligomer formation specifically for chaperone substrates of Chlamydia trachomatis HtrA (DegP homolog). We have demonstrated that CtHtrA proteolysis could be activated by allosteric binding and oligomer formation. The PDZ1 activator cleft was required for the activation and oligomer formation. However, unique to CtHtrA was the critical role for residues at the PDZ1:protease interface in oligomer formation when the activator was an in vitro chaperone substrate. Furthermore, a potential in vivo chaperone substrate, the major outer membrane protein (MOMP) from Chlamydia, was able to activate CtHtrA and induce oligomer formation. Therefore, we have revealed novel residues involved in the activation of CtHtrA which are likely to have important in vivo implications for outer membrane protein assembly.
Resumo:
This investigation has shown that by transforming free caustic in red mud (RM) to Bayer hydrotalcite (during the seawater neutralization (SWN) process) enables a more controlled release mechanism for the neutralization of acid sulfate soils. The formation of hydrotalcite has been confirmed by X-ray diffraction (XRD) and differential thermalgravimetric analysis (DTG), while the dissolution of hydrotalcite and sodalite has been observed through XRD, DTG, pH plots, and ICP-OES. Coupling of all techniques enabled three neutralization mechanisms to be determined: (1) free alkali, (2) hydrotalcite dissolution, and (3) sodalite dissolution. The mechanisms are determined on the basis of ICP-OES and kinetic information. When the mass of RM or SWN-RM is greater than 0.08 g/50 mL, the pH of solution increases to a suitable value for plant life with aluminum leaching kept at a minimum. To obtain a neutralization pH greater than 6 in 10 min, the following ratio of bauxite residue (g) in 50 mL with a known iron sulfate (Fe2(SO4)3) concentration can be determined as follows: 0.04 g:50 mL:0.1 g/L of Fe2(SO4)3.
Resumo:
This PhD thesis presents novel and original research in the field of Insulin-like Growth Factor-I (or IGF-I) biology. IGF-I plays an essential role in promoting normal human growth and development; it also represents both a target and treatment for various diseases. This thesis provides interesting insights into previously uncharacterised mechanisms of action that underlie IGF-I biology. Such findings may lead to improved and novel treatments across a broad range of medical conditions.