884 resultados para Period wave characteristics
Resumo:
An experimental study was conducted on shock wave turbulent boundary layer interactions caused by a blunt swept fin-plate configuration at Mach numbers of 5.0, 7.8, 9.9 for a Reynolds number range of (1.0.similar to 4.7) x 10(7)/m. Detailed heat transfer and pressure distributions were measured at fin deflection angles of up to 30 degrees for a sweepback angle of 67.6 degrees. Surface oil flow patterns and liquid crystal thermograms as well as schlieren pictures of fin shock shape were taken. The study shows that the flow was separated at deflection of 10 degrees and secondary separation were detected at deflection of theta greater than or equal to 20 degrees. The heat transfer and pressure distributions on flat plate showed an extensive plateau region followed by a distinct dip and local peak close to the fin foot. Measurements of the plateau pressure and heat transfer were in good agreement with existing prediction methods, but pressure and heating peak measurements at M greater than or equal to 6 were significantly lower than predicted by the simple prediction techniques at lower Mach numbers.
Resumo:
In this paper, the wave pattern characteristics of shock-induced two-phase nozzle Hows with the quiescent or moving dusty gas ahead of the incident-shock front has been investigated by using high-resolution numerical method. As compared with the corresponding results in single-phase nozzle flows of the pure gas, obvious differences between these two kinds of flows can be obtained.
Resumo:
Temperature and stress tunabilities of long-period Bragg gratings imprinted in Panda fiber are presented in this letter. It is shown that the temperature and strain response of the resonance peaks for fast and slow axes are different not only in their magnitudes but also in the signs of the slope. Furthermore, the characteristics for different order modes are different both in magnitudes and signs. The complicated phenomena are discussed by using a simplified model.
Resumo:
Long wavelength light emission was realized by capping InAs quantum dots (QDs) with short period GaAs/InAs superlattices (SLs) and an InGaAs strain-reducing layer (SRL). The optical properties were systematically investigated by photoluminescence tests. With increasing the periods of SLs, the emission wavelength of InAs QDs shifts from 1.27 to 1.53 mum. We explain the redshift as a result of the increased QD height with the SLs and the reduced strain in the dot caused by InGaAs SRL. (C) 2004 Published by Elsevier Ltd.
Resumo:
Mode characteristics of equilateral triangle resonators (ETRs) are analyzed based on the symmetry operation of the point group C-3v. The results show that doubly degenerate eigenstates can be reduced to the A(1) and A(2) representations of C-3v, if the longitudinal mode number is a multiple of 6; otherwise, they form the E irreducible representation Of C-3v. And the one-period length for the mode light ray is half of the perimeter of the ETR. Mode Q-factors are calculated by the finite-difference time-domain (FDTD) technique and compared with those calculated from far-field emission based on the analytical near-field pattern for TE and TM modes. The results show that the far-field emission based on the analytical field distribution can be used to estimate the mode Q-factor, especially for TM modes. FDTD numerical results also show that Q-factor of TE modes reaches maximum value as the longitudinal mode number is a multiple of 7. In addition, photoluminescence spectra and measured Q-factors are presented for fabricated ETR with side lengths of 20 and 30 mu m, and the mode wavelength intervals are compared with the analytical results.
Resumo:
Because of the intrinsic difficulty in determining distributions for wave periods, previous studies on wave period distribution models have not taken nonlinearity into account and have not performed well in terms of describing and statistically analyzing the probability density distribution of ocean waves. In this study, a statistical model of random waves is developed using Stokes wave theory of water wave dynamics. In addition, a new nonlinear probability distribution function for the wave period is presented with the parameters of spectral density width and nonlinear wave steepness, which is more reasonable as a physical mechanism. The magnitude of wave steepness determines the intensity of the nonlinear effect, while the spectral width only changes the energy distribution. The wave steepness is found to be an important parameter in terms of not only dynamics but also statistics. The value of wave steepness reflects the degree that the wave period distribution skews from the Cauchy distribution, and it also describes the variation in the distribution function, which resembles that of the wave surface elevation distribution and wave height distribution. We found that the distribution curves skew leftward and upward as the wave steepness increases. The wave period observations for the SZFII-1 buoy, made off the coast of Weihai (37A degrees 27.6' N, 122A degrees 15.1' E), China, are used to verify the new distribution. The coefficient of the correlation between the new distribution and the buoy data at different spectral widths (nu=0.3-0.5) is within the range of 0.968 6 to 0.991 7. In addition, the Longuet-Higgins (1975) and Sun (1988) distributions and the new distribution presented in this work are compared. The validations and comparisons indicate that the new nonlinear probability density distribution fits the buoy measurements better than the Longuet-Higgins and Sun distributions do. We believe that adoption of the new wave period distribution would improve traditional statistical wave theory.
Resumo:
The South China Sea (SCS) is one of the most active areas of internal waves. We undertook a program of physical oceanography in the northern South China Sea from June to July of 2009, and conducted a 1-day observation from 15:40 of June 24 to 16:40 of June 25 using a chain of instruments, including temperature sensors, pressure sensors and temperature-pressure meters at a site (117.5A degrees E, 21A degrees N) northeast of the Dongsha Islands. We measured fluctuating tidal and subtidal properties with the thermistor-chain and a ship-mounted Acoustic Doppler Current Profiler, and observed a large-amplitude nonlinear internal wave passing the site followed by a number of small ones. To further investigate this phenomenon, we collected the tidal constituents from the TPXO7.1 dataset to evaluate the tidal characteristics at and around the recording site, from which we knew that the amplitude of the nonlinear internal wave was about 120 m and the period about 20 min. The horizontal and vertical velocities induced by the soliton were approximately 2 m/s and 0.5 m/s, respectively. This soliton occurred 2-3 days after a spring tide.
Resumo:
The power output from a wave energy converter is typically predicted using experimental and/or numerical modelling techniques. In order to yield meaningful results the relevant characteristics of the device, together with those of the wave climate must be modelled with sufficient accuracy.
The wave climate is commonly described using a scatter table of sea states defined according to parameters related to wave height and period. These sea states are traditionally modelled with the spectral distribution of energy defined according to some empirical formulation. Since the response of most wave energy converters vary at different frequencies of excitation, their performance in a particular sea state may be expected to depend on the choice of spectral shape employed rather than simply the spectral parameters. Estimates of energy production may therefore be affected if the spectral distribution of wave energy at the deployment site is not well modelled. Furthermore, validation of the model may be affected by differences between the observed full scale spectral energy distribution and the spectrum used to model it.
This paper investigates the sensitivity of the performance of a bottom hinged flap type wave energy converter to the spectral energy distribution of the incident waves. This is investigated experimentally using a 1:20 scale model of Aquamarine Power’s Oyster wave energy converter, a bottom hinged flap type device situated at the European Marine Energy Centre (EMEC) in approximately 13m water depth. The performance of the model is tested in sea states defined according to the same wave height and period parameters but adhering to different spectral energy distributions.
The results of these tests show that power capture is reduced with increasing spectral bandwidth. This result is explored with consideration of the spectral response of the device in irregular wave conditions. The implications of this result are discussed in the context of validation of the model against particular prototype data sets and estimation of annual energy production.
Resumo:
Wave impacts on an oscillating wave surge converter are examined using experimental and numerical methods. The mechanics of the impact event are identified experimentally with the use of images recorded with a high-speed camera. It is shown that it is the device that impacts the wave rather than a breaking wave impacting the device. Numerical simulations using two different approaches are used to further understand the issue. Good agreement is shown between numerical simulations and experimental measurements at 25th scale.
Resumo:
Wave impacts on an Oscillating Wave Surge Converter are examined using experimental and numerical methods. The mechanics of the impact event are identified experimentally with the use of images recorded with a high speed camera. It is shown that it is the device which impacts the wave rather than a breaking wave impacting the device. Numerical simulations using two different approaches are used to further understand the issue. Good agreement is shown between numerical simulations and experimental measurements at 25th scale.
Resumo:
[1] Temperature and ozone observations from the Microwave Limb Sounder (MLS) on the EOS Aura satellite are used to study equatorial wave activity in the autumn of 2005. In contrast to previous observations for the same season in other years, the temperature anomalies in the middle and lower tropical stratosphere are found to be characterized by a strong wave-like eastward progression with zonal wave number equal to 3. Extended empirical orthogonal function (EOF) analysis reveals that the wave 3 components detected in the temperature anomalies correspond to a slow Kelvin wave with a period of 8 days and a phase speed of 19 m/s. Fluctuations associated with this Kelvin wave mode are also apparent in ozone profiles. Moreover, as expected by linear theory, the ozone fluctuations observed in the lower stratosphere are in phase with the temperature perturbations, and peak around 20–30 hPa where the mean ozone mixing ratios have the steepest vertical gradient. A search for other Kelvin wave modes has also been made using both the MLS observations and the analyses from one experiment where MLS ozone profiles are assimilated into the European Centre for Medium-Range Weather Forecasts (ECMWF) data assimilation system via a 6-hourly 3D var scheme. Our results show that the characteristics of the wave activity detected in the ECMWF temperature and ozone analyses are in good agreement with MLS data.
Resumo:
In this article, Northern Hemisphere winter midlatitude blocking is analysed through its wave-breaking characteristics. Rossby wave breaking is identified as a key process in blocking occurrence, as it provides the mechanism for the meridional reversal pattern typical of blocking. Two indices are designed to detect the major properties of wave breaking, i.e. the orientation (cyclonic/anticyclonic–direction of breaking or DB index) and the relative contribution of air masses (warm/cold–relative intensity or RI index). The use of the DB index differentiates between the anticyclonic cases over Europe and Asia and the cyclonic events over the oceanic basins. One of the three regions displaying cyclonic type was found over the Atlantic Ocean, the other two being over the Pacific Ocean. The first of these is located over the western side of the Pacific and is dominated by warm air extrusions, whereas the second is placed northward of the exit region of the jet stream, where the meridional θ gradient is much weaker. Two European blocking types have been detected using the RI index, which separates out the cases dominated by warm and cold air masses. The latter cases in particular exhibited a well-structured dipole, with associated strong anomalies in both temperature and precipitation. Copyright © 2011 Royal Meteorological Society