369 resultados para Peptidase


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dipeptidyl peptidase IV (DPP IV) is a widely distributed physiological enzyme that can be found solubilized in blood, or membrane-anchored in tissues. DPP IV and related dipeptidase enzymes cleave a wide range of physiological peptides and have been associated with several disease processes including Crohn's disease, chronic liver disease, osteoporosis, multiple sclerosis, eating disorders, rheumatoid arthritis, cancer, and of direct relevance to this review, type 2 diabetes. Here, we place particular emphasis on two peptide substrates of DPP IV with insulin-releasing and antidiabetic actions namely, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). The rationale for inhibiting DPP IV activity in type 2 diabetes is that it decreases peptide cleavage and thereby enhances endogenous incretin hormone activity. A multitude of novel DPP IV inhibitor compounds have now been developed and tested. Here we examine the information available on DPP IV and related enzymes, review recent preclinical and clinical data for DPP IV inhibitors, and assess their clinical significance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ubiquitin-proteasome proteolytic pathway plays a major role in degradation of myofibrillar proteins in skeletal muscle during cancer cachexia. The end-product of this pathway is oligopeptides and these are degraded by the extralysomal peptidase tripeptidyl-peptidase II (TPPII) together with various aminopeptidases to form tripeptides and amino acids. To investigate if a relationship exists between the activity of the proteasome and TPPII, functional activities have been measured in gastrocnemius muscle of mice bearing the MAC16 tumour, and with varying extents of weight loss. TPPII activity was quantitated using the specific substrate Ala-Ala-Phe-7-amido-4-methylcoumarin, while proteasome activity was determined as the 'chymotrypsin-like' enzyme activity. Both proteasome proteolytic activity and TPPII activity increased in parallel with increasing weight loss, reaching a maximum at 16% weight loss, after which there was a progressive decrease in activity for both proteases with increasing weight loss. In murine myotubes, proteolysis-inducing factor, which is a sulphated glycoprotein produced by cachexia-inducing tumours, induced an increase in activity of both proteasome and TPPII, with an identical dose-response curve, and both activities were inhibited by eicosapentaenoic acid. These results suggest that the activities of both the proteasome and TPPII are regulated in a parallel manner in cancer cachexia, and that both are induced by the same factor and probably have the same intracellular signalling pathways and transcription factors. © 2004 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucagon-like peptide-1(7-36)amide (GLP-1) possesses several unique and beneficial effects for the potential treatment of type 2 diabetes. However, the rapid inactivation of GLP-1 by dipeptidyl peptidase IV (DPP IV) results in a short half-life in vivo (less than 2 min) hindering therapeutic development. In the present study, a novel His7-modified analogue of GLP-1, N-pyroglutamyl-GLP-1 as well as N-acetyl-GLP-1 were synthesised and tested for DPP IV stability and biological activity. Incubation of GLP-1 with either DPP IV or human plasma resulted in rapid degradation of native GLP-1 to GLP-1(9-36)amide, while N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 were completely resistant to degradation. N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 bound to the GLP-1 receptor but had reduced affinities (IC50 values 32.9 and 6.7 nM, respectively) compared with native GLP-1 (IC50-37 nM). Similarly, both analogues stimulated cAMP production with EC50 values of 16.3 and 27 nM respectively compared with GLP-1 (EC50 4.7 nM). However, N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 exhibited potent insulinotropic activity in vitro at 5.6 mM glucose (P< 0.05 to P< 0.001) similar to native GLP-1. Both analogues (25 nM/kg body weight) lowered plasma glucose and increased plasma insulin levels when administered in conjunction with glucose (18 nM/kg body weight) to adult obese diabetic (ob/ob) mice. N-pyroglutamyl-GLP-1 was substantially better at lowering plasma glucose compared with the native peptide, while N-acetyl-GLP-1 was significantly more potent at stimulating insulin secretion. These studies indicate that N-terminal modification of GLP-1 results in DPP IV-resistant and biologically potent forms of GLP-1. The particularly powerful antihyperglycaemic action of N-pyroglutamyl-GLP-1 shows potential for the treatment of type 2 diabetes. © 2004 Society for Endocrinology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the incretin hormone glucagon-like peptide-1 (GLP-1) is a potent stimulator of insulin release, its rapid degradation in vivo by the enzyme dipeptidyl peptidase IV (DPP IV) greatly limits its potential for treatment of type 2 diabetes. Here, we report two novel Ala8-substituted analogues of GLP-1, (Abu8)GLP-1 and (Val8)GLP-1 which were completely resistant to inactivation by DPP IV or human plasma. (Abu8)GLP-1 and (Val8)GLP-1 exhibited moderate affinities (IC50: 4.76 and 81.1 nM, respectively) for the human GLP-1 receptor compared with native GLP-1 (IC50: 0.37 nM). (Abu8)GLP-1 and (Val8)GLP-1 dose-dependently stimulated cAMP in insulin-secreting BRIN BD11 cells with reduced potency compared with native GLP-1 (1.5- and 3.5-fold, respectively). Consistent with other mechanisms of action, the analogues showed similar, or in the case of (Val8)GLP-1 slightly impaired insulin releasing activity in BRIN BD11 cells. Using adult obese (ob/ob) mice, (Abu8 )GLP-1 had similar glucose-lowering potency to native GLP-1 whereas the action of (Val8)GLP-1 was enhanced by 37%. The in vivo insulin-releasing activities were similar. These data indicate that substitution of Ala8 in GLP-1 with Abu or Val confers resistance to DPP IV inactivation and that (Val8)GLP-1 is a particularly potent N-terminally modified GLP-1 analogue of possible use in type 2 diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alogliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor that is a class of relatively new oral hypoglycaemic drugs used in patients with type 2 diabetes (T2DM), can be used as monotherapy or in combination with other anti-diabetic agents, including metformin, pioglitazone, sulfonylureas and insulin with a considerable therapeutic effect. Alogliptin exhibits favorable pharmacokinetic and pharmacodynamic profiles in humans. Alogliptin is mainly metabolized by cytochrome P450 (CYP2D6) and CYP3A4. Dose reduction is recommended for patients with moderate or worse renal impairment. Side effects of alogliptin include nasopharyngitis, upper-respiratory tract infections and headache. Hypoglycaemia is seen in about 1.5% of the T2DM patients. Rare but severe adverse reactions such as acute pancreatitis, serious hypersensitivity including anaphylaxis, angioedema and severe cutaneous reactions such as Stevens-Johnson syndrome have been reported from post-marketing monitoring. Pharmacokinetic interactions have not been observed between alogliptin and other drugs including glyburide, metformin, pioglitazone, insulin and warfarin. The present review aimed to update the clinical information on pharmacodynamics, pharmacokinetics, adverse effects and drug interactions, and to discuss the future directions of alogliptin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study, to elucidate the role of des(1-3)IGF-I in the maturation of IGF-I,used two strategies. The first was to detect the presence of enzymes in tissues, which would act on IGF-I to produce des(1-3)IGF-I, and the second was to detect the potential products of such enzymic activity, namely Gly-Pro-Glu(GPE), Gly-Pro(GP) and des(l- 3)IGF-I. No neutral tripeptidyl peptidase (TPP II), which would release the tripeptide GPE from IGF-I, was detected in brain, urine nor in red or white blood cells. The TPPlike activity which was detected, was attributed to a combined action of a dipeptidyl peptidase (DPP N) and an aminopeptidase (AP A). A true TPP II was, however, detected in platelets. Two purified TPP II enzymes were investigated but they did not release GPE from IGF-I under a variety of conditions. Consequently, TPP II seemed unlikely to participate in the formation of des(1-3)IGF-I. In contrast, an acidic tripeptidyl peptidase activity (TPP I) was detected in brain and colostrum, the former with a pH optimum of 4.5 and the latter 3.8. It seems likely that such an enzyme would participate in the formation of des( 1-3 )IGF-I in these tissues in vitro, ie. that des(1-3)IGF-I may have been produced as an artifact in the isolation of IGF-I from brain and colostrum in acidic conditions. This contrasts with suggestions of an in vivo role for des(1-3)IGF-I, as reported by others. The activity of a dipeptidyl peptidase N (DPP N) from urine, which should release the dipeptide GP from IGF-I, was assessed under a variety of conditions and with a variety of additives and potential enzyme stimulants, but there was no release of GP. The DPP N also exhibited a transferase activity with synthetic substrates in the presence of dipeptides, at lower concentrations than previously reported for other acceptors or other proteolytic enzymes. In addition, a low concentration of a product,possibly the tetrapeptide Gly-Pro-Gly-Leu, was detected with the action of the enzyme on IGF-I in the presence of the dipeptide Gly-Leu. As part of attempts to detect tissue production of des(1-3)IGF-I, a monoclonal antibody (MAb ), directed towards the GPE- end ofiGF-I was produced by immunisation with a 10-mer covalently attached to a carrier protein. By the use of indirect ELISA and inhibitor studies, the MAb was shown to selectively recognise peptides with anNterminal GPE- sequence, and applied to the indirect detection of des(1-3)IGF-I. The concentration of GPE in brain, measured by mass spectrometry ( MS), was low, and the concentration of total IGF-I (measured by ELISA with a commercial polyclonal antibody [P Ab]) was 40 times higher at 50 nmol/kg. This also, was not consistent with the action of a tripeptidyl peptidase in brain that converted all IGF-I to des(1-3)IGF-I plus GPE. Contrasting ELISA results, using the MAb prepared in this study, suggest an even higher concentration of intact IGF-I of 150 nmollkg. This would argue against the presence of any des( 1-3 )IGF-I in brain, but in turn, this indicates either the presence of other substances containing a GPE amino-terminus or other cross reacting epitope. Although the results of the specificity studies reported in Chapter 5 would make this latter possibility seem unlikely, it cannot be completely excluded. No GP was detected in brain by MS. No GPE was detected in colostrum by capillary electrophoresis (CE) but the interference from extraneous substances reduced the detectability of GPE by CE and this approach would require further, prior, purification and concentration steps. A molecule, with a migration time equal to that of the peptide GP, was detected in colostrum by CE, but the concentration (~ 10 11mo/L) was much higher than the IGF-I concentration measured by radio-immunoassay using a PAb (80 nmol/L) or using a Mab (300-400 nmolL). A DPP IV enzyme was detected in colostrum and this could account for the GP, derived from substrates other than IGF-1. Based on the differential results of the two antibody assays, there was no indication of the presence of des(1-3)IGF-I in brain or colostrum. In the absence of any enzyme activity directed towards the amino terminus of IGF-I and the absence any potential products, IGF-I, therefore, does not appear to "mature" via des(1-3)IGF-I in the brain, nor in the neutral colostrum. In spite of these results which indicate the absence of an enzymic attack on IGF-I and the absence of the expected products in tissues, the possibility that the conversion of IGF-I may occur in neutral conditions in limited amounts, cannot be ruled out. It remains possible that in the extracellular environment of the membrane, a complex interaction of IGF-I, binding protein, aminopeptidase(s) and receptor, produces des(1- 3)IGF-I as a transient product which is bound to the receptor and internalised.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PSA-RP2 is a variant transcript expressed from the PSA gene that is conserved in gorillas, chimpanzees and humans suggesting a particular relevance for this transcript in these primates. We demonstrated by qRT-PCR that PSA-RP2 is upregulated in prostate cancer compared with benign prostatic hyperplasia tissues. The PSA-RP2 protein was not detected in seminal fluid and was cytoplasmically localised but not secreted from LNCaP or transfected PC3 prostate cells, despite secretion from transfected Cos-7 and HEK293 kidney cell lines. PSA-RP2-transfected PC3 cells showed slightly decreased proliferation and increased migration towards PC3-conditioned medium that could suggest a functional role in prostate cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proteases regulate a spectrum of diverse physiological processes, and dysregulation of proteolytic activity drives a plethora of pathological conditions. Understanding protease function is essential to appreciating many aspects of normal physiology and progression of disease. Consequently, development of potent and specific inhibitors of proteolytic enzymes is vital to provide tools for the dissection of protease function in biological systems and for the treatment of diseases linked to aberrant proteolytic activity. The studies in this thesis describe the rational design of potent inhibitors of three proteases that are implicated in disease development. Additionally, key features of the interaction of proteases and their cognate inhibitors or substrates are analysed and a series of rational inhibitor design principles are expounded and tested. Rational design of protease inhibitors relies on a comprehensive understanding of protease structure and biochemistry. Analysis of known protease cleavage sites in proteins and peptides is a commonly used source of such information. However, model peptide substrate and protein sequences have widely differing levels of backbone constraint and hence can adopt highly divergent structures when binding to a protease’s active site. This may result in identical sequences in peptides and proteins having different conformations and diverse spatial distribution of amino acid functionalities. Regardless of this, protein and peptide cleavage sites are often regarded as being equivalent. One of the key findings in the following studies is a definitive demonstration of the lack of equivalence between these two classes of substrate and invalidation of the common practice of using the sequences of model peptide substrates to predict cleavage of proteins in vivo. Another important feature for protease substrate recognition is subsite cooperativity. This type of cooperativity is commonly referred to as protease or substrate binding subsite cooperativity and is distinct from allosteric cooperativity, where binding of a molecule distant from the protease active site affects the binding affinity of a substrate. Subsite cooperativity may be intramolecular where neighbouring residues in substrates are interacting, affecting the scissile bond’s susceptibility to protease cleavage. Subsite cooperativity can also be intermolecular where a particular residue’s contribution to binding affinity changes depending on the identity of neighbouring amino acids. Although numerous studies have identified subsite cooperativity effects, these findings are frequently ignored in investigations probing subsite selectivity by screening against diverse combinatorial libraries of peptides (positional scanning synthetic combinatorial library; PS-SCL). This strategy for determining cleavage specificity relies on the averaged rates of hydrolysis for an uncharacterised ensemble of peptide sequences, as opposed to the defined rate of hydrolysis of a known specific substrate. Further, since PS-SCL screens probe the preference of the various protease subsites independently, this method is inherently unable to detect subsite cooperativity. However, mean hydrolysis rates from PS-SCL screens are often interpreted as being comparable to those produced by single peptide cleavages. Before this study no large systematic evaluation had been made to determine the level of correlation between protease selectivity as predicted by screening against a library of combinatorial peptides and cleavage of individual peptides. This subject is specifically explored in the studies described here. In order to establish whether PS-SCL screens could accurately determine the substrate preferences of proteases, a systematic comparison of data from PS-SCLs with libraries containing individually synthesised peptides (sparse matrix library; SML) was carried out. These SML libraries were designed to include all possible sequence combinations of the residues that were suggested to be preferred by a protease using the PS-SCL method. SML screening against the three serine proteases kallikrein 4 (KLK4), kallikrein 14 (KLK14) and plasmin revealed highly preferred peptide substrates that could not have been deduced by PS-SCL screening alone. Comparing protease subsite preference profiles from screens of the two types of peptide libraries showed that the most preferred substrates were not detected by PS SCL screening as a consequence of intermolecular cooperativity being negated by the very nature of PS SCL screening. Sequences that are highly favoured as result of intermolecular cooperativity achieve optimal protease subsite occupancy, and thereby interact with very specific determinants of the protease. Identifying these substrate sequences is important since they may be used to produce potent and selective inhibitors of protolytic enzymes. This study found that highly favoured substrate sequences that relied on intermolecular cooperativity allowed for the production of potent inhibitors of KLK4, KLK14 and plasmin. Peptide aldehydes based on preferred plasmin sequences produced high affinity transition state analogue inhibitors for this protease. The most potent of these maintained specificity over plasma kallikrein (known to have a very similar substrate preference to plasmin). Furthermore, the efficiency of this inhibitor in blocking fibrinolysis in vitro was comparable to aprotinin, which previously saw clinical use to reduce perioperative bleeding. One substrate sequence particularly favoured by KLK4 was substituted into the 14 amino acid, circular sunflower trypsin inhibitor (SFTI). This resulted in a highly potent and selective inhibitor (SFTI-FCQR) which attenuated protease activated receptor signalling by KLK4 in vitro. Moreover, SFTI-FCQR and paclitaxel synergistically reduced growth of ovarian cancer cells in vitro, making this inhibitor a lead compound for further therapeutic development. Similar incorporation of a preferred KLK14 amino acid sequence into the SFTI scaffold produced a potent inhibitor for this protease. However, the conformationally constrained SFTI backbone enforced a different intramolecular cooperativity, which masked a KLK14 specific determinant. As a consequence, the level of selectivity achievable was lower than that found for the KLK4 inhibitor. Standard mechanism inhibitors such as SFTI rely on a stable acyl-enzyme intermediate for high affinity binding. This is achieved by a conformationally constrained canonical binding loop that allows for reformation of the scissile peptide bond after cleavage. Amino acid substitutions within the inhibitor to target a particular protease may compromise structural determinants that support the rigidity of the binding loop and thereby prevent the engineered inhibitor reaching its full potential. An in silico analysis was carried out to examine the potential for further improvements to the potency and selectivity of the SFTI-based KLK4 and KLK14 inhibitors. Molecular dynamics simulations suggested that the substitutions within SFTI required to target KLK4 and KLK14 had compromised the intramolecular hydrogen bond network of the inhibitor and caused a concomitant loss of binding loop stability. Furthermore in silico amino acid substitution revealed a consistent correlation between a higher frequency of formation and the number of internal hydrogen bonds of SFTI-variants and lower inhibition constants. These predictions allowed for the production of second generation inhibitors with enhanced binding affinity toward both targets and highlight the importance of considering intramolecular cooperativity effects when engineering proteins or circular peptides to target proteases. The findings from this study show that although PS-SCLs are a useful tool for high throughput screening of approximate protease preference, later refinement by SML screening is needed to reveal optimal subsite occupancy due to cooperativity in substrate recognition. This investigation has also demonstrated the importance of maintaining structural determinants of backbone constraint and conformation when engineering standard mechanism inhibitors for new targets. Combined these results show that backbone conformation and amino acid cooperativity have more prominent roles than previously appreciated in determining substrate/inhibitor specificity and binding affinity. The three key inhibitors designed during this investigation are now being developed as lead compounds for cancer chemotherapy, control of fibrinolysis and cosmeceutical applications. These compounds form the basis of a portfolio of intellectual property which will be further developed in the coming years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

20 and 26 S proteasomes were isolated from rat liver. The procedure developed for the 26 S proteasome resulted in greatly improved yields compared with previously published methods. A comparison of the kinetic properties of 20 and 26 S proteasomes showed significant differences in the kinetic characteristics with certain substrates and differences in the effects of a protein substrate on peptidase activity. Observed differences in the kinetics of peptidylglutamyl peptide hydrolase activity suggest that the 26 S complex cannot undergo the conformational changes of 20 S proteasomes at high concentrations of the substrate benzyloxycarbonyl (Z) -Leu-Leu-Glu-b-naphthylamide. Various inhibitors that differentially affect the trypsin-like and chymotrypsin-like activities have been identified. Ala-Ala-Phe-chloromethyl (CH2Cl) inhibits chymotrypsin-like activity assayed with succinyl (Suc) -Leu-Leu-Val-Tyr-AMC, but surprisingly not hydrolysis of Ala-Ala-Phe-7-amido-4-methylcoumarin (AMC). Tyr-Gly-Arg-CH2Cl inhibits Suc-Leu-Leu-Val-Tyr-AMC hydrolysis as well as trypsinlike activity measured with t-butoxycarbonyl (Boc) -Leu-Ser-Thr-Arg-AMC, while Z-Phe-Gly-Tyr-diazomethyl (CHN2) was found to inhibit only the two chymotrypsin- like activities. Radiolabeled forms of peptidyl chloromethane and peptidyl diazomethane inhibitors, [3H]acetyl-Ala-Ala-Phe-CH2Cl, [3H]acetyland radioiodinated Tyr-Gly-Arg-CH2Cl, and Z-Phe-Gly- Tyr-(125I-CHN2), have been used to identify catalytic components associated with each of the three peptidase activities. In each case, incorporation of the label could be blocked by prior treatment of the proteasomes with known active site-directed inhibitors, calpain inhibitor 1 or 3,4-dichloroisocoumarin. Subunits of labeled proteasomes were separated either by reverse phase-HPLC and SDS-polyacrylamide gel electrophoresis or by twodimensional polyacrylamide gel electrophoresis followed by autoradiography/fluorography and immunoblotting with subunit-specific antibodies. In each case, label was found to be incorporated into subunits C7, MB1, and LMP7 but in different relative amounts depending on the inhibitor used, consistent with the observed effects on the different peptidase activities. The results strongly suggest a relationship between trypsin-like activity and chymotrypsin-like activity. They also help to relate the different subunits of the complex to the assayed multicatalytic endopeptidase activities

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Canonical serine protease inhibitors commonly bind to their targets through a rigid loop stabilised by an internal hydrogen bond network and disulfide bond(s). The smallest of these is sunflower trypsin inhibitor (SFTI-1), a potent and broad-range protease inhibitor. Recently, we re-engineered the contact β-sheet of SFTI-1 to produce a selective inhibitor of kallikrein-related peptidase 4 (KLK4), a protease associated with prostate cancer progression. However, modifications in the binding loop to achieve specificity may compromise structural rigidity and prevent re-engineered inhibitors from reaching optimal binding affinity. Methodology/Principal Findings In this study, the effect of amino acid substitutions on the internal hydrogen bonding network of SFTI were investigated using an in silico screen of inhibitor variants in complex with KLK4 or trypsin. Substitutions favouring internal hydrogen bond formation directly correlated with increased potency of inhibition in vitro. This produced a second generation inhibitor (SFTI-FCQR Asn14) which displayed both a 125-fold increased capacity to inhibit KLK4 (Ki = 0.0386±0.0060 nM) and enhanced selectivity over off-target serine proteases. Further, SFTI-FCQR Asn14 was stable in cell culture and bioavailable in mice when administered by intraperitoneal perfusion. Conclusion/Significance These findings highlight the importance of conserving structural rigidity of the binding loop in addition to optimising protease/inhibitor contacts when re-engineering canonical serine protease inhibitors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stimulation of the androgen receptor via bioavailable androgens, including testosterone and testosterone metabolites, is a key driver of prostate development and the early stages of prostate cancer. Androgens are hydrophobic and as such require carrier proteins, including sex hormone-binding globulin (SHBG), to enable efficient distribution from sites of biosynthesis to target tissues. The similarly hydrophobic corticosteroids also require a carrier protein whose affinity for steroid is modulated by proteolysis. However, proteolytic mechanisms regulating the SHBG/androgen complex have not been reported. Here, we show that the cancer-associated serine proteases, kallikrein-related peptidase (KLK)4 and KLK14, bind strongly to SHBG in glutathione S-transferase interaction analyses. Further, we demonstrate that active KLK4 and KLK14 cleave human SHBG at unique sites and in an androgen-dependent manner. KLK4 separated androgen-free SHBG into its two laminin G-like (LG) domains that were subsequently proteolytically stable even after prolonged digestion, whereas a catalytically equivalent amount of KLK14 reduced SHBG to small peptide fragments over the same period. Conversely, proteolysis of 5α-dihydrotestosterone (DHT)-bound SHBG was similar for both KLKs and left the steroid binding LG4 domain intact. Characterization of this proteolysis fragment by [(3)H]-labeled DHT binding assays revealed that it retained identical affinity for androgen compared with full-length SHBG (dissociation constant = 1.92 nM). Consistent with this, both full-length SHBG and SHBG-LG4 significantly increased DHT-mediated transcriptional activity of the androgen receptor compared with DHT delivered without carrier protein. Collectively, these data provide the first evidence that SHBG is a target for proteolysis and demonstrate that a stable fragment derived from proteolysis of steroid-bound SHBG retains binding function in vitro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Kallikrein-related peptidase, KLK4, has been shown to be significantly overexpressed in prostate tumours in numerous studies and is suggested to be a potential biomarker for prostate cancer. KLK4 may also play a role in prostate cancer progression through its involvement in epithelial-mesenchymal transition, a more aggressive phenotype, and metastases to bone. It is well known that genetic variation has the potential to affect gene expression and/or various protein characteristics and hence we sought to investigate the possible role of single nucleotide polymorphisms (SNPs) in the KLK4 gene in prostate cancer. Assessment of 61 SNPs in the KLK4 locus (±10 kb) in approximately 1300 prostate cancer cases and 1300 male controls for associations with prostate cancer risk and/or prostate tumour aggressiveness (Gleason score <7 versus ≥7) revealed 7 SNPs to be associated with a decreased risk of prostate cancer at the Ptrend<0.05 significance level. Three of these SNPs, rs268923, rs56112930 and the HapMap tagSNP rs7248321, are located several kb upstream of KLK4; rs1654551 encodes a non-synonymous serine to alanine substitution at position 22 of the long isoform of the KLK4 protein, and the remaining 3 risk-associated SNPs, rs1701927, rs1090649 and rs806019, are located downstream of KLK4 and are in high linkage disequilibrium with each other (r2≥0.98). Our findings provide suggestive evidence of a role for genetic variation in the KLK4 locus in prostate cancer predisposition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peptidases are ubiquitous enzymes involved in diverse biological processes. Fragments from bioactive peptides have been found in skin secretions from frogs, and their presence suggests processing by peptidases. Thus, the aim of this work was to characterize the peptidase activity present in the skin secretion of Leptodactylus labyrinthicus. Zymography revealed the presence of three bands of gelatinase activity of approximately 60 kDa, 66 kDa, and 80 kDa, which the first two were calcium-dependent. These three bands were inhibited either by ethylenediaminetetraacetic acid (EDTA) and phenathroline; thus, they were characterized as metallopeptidases. Furthermore, the proteolytic enzymes identified were active only at pH 6.0–10.0, and their activity increased in the presence of CHAPS or NaCl. Experiments with fluorogenic substrates incubated with skin secretions identified aminopeptidase activity, with cleavage after leucine, proline, and alanine residues. This activity was directly proportional to the protein concentration, and it was inhibited in the presence of metallo and serine peptidase inhibitors. Besides, the optimal pH for substrate cleavage was determined to be 7.0–8.0. The results of the in gel activity assay showed that all substrates were hydrolyzed by a 45 kDa peptidase. Gly-Pro-AMC was also cleaved by a peptidase greater than 97 kDa. The data suggest the presence of dipeptidyl peptidases (DPPs) and metallopeptidases; however, further research is necessary. In conclusion, our work will help to elucidate the implication of these enzymatic activities in the processing of the bioactive peptides present in frog venom, expanding the knowledge of amphibian biology.