940 resultados para Pathogen Pseudomonas-syringae


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Kiwifruit (genus Actinidia) is an important horticultural crop grown in the temperate regions. The four world’s largest producers are China, Italy, New Zealand and Chile. More than 50 species are recognized in the genus but the principal species in cultivation are A. deliciosa and A. chinensis. In Italy, as well as in many other countries, the kiwifruit crop has been considered to be relatively disease free and then no certification system for this species has been developed to regulate importation of propagation plant material in the European Union. During the last years a number of fungal and bacterial diseases have been recorded such as Botrytis cinerea and Pseudomonas syringae pv. actinidiae. Since 2003, several viruses and virus-like diseases have been identified and more recent studies demonstrated that Actinidia spp can be infected by a wide range of viral agents. In collaboration with the University of Auckland we have been detected thirteen different viral species on kiwifruit plants. During the three years of my PhD I worked on the characterization of Cucumber mosaic virus (CMV) and Pelargonium zonate spot virus (PZSV). The determination of causal agents has been based on host range, symptom expression in the test plant species and morphological properties of the virus particles using transmission electron microscopy (TEM) and using specific oligonucleotide primers in reverse transcription-polymerase chain reaction (RT-PCR). Both viruses induced several symptoms on kiwifruit plants. Moreover with new technologies such as high-throughput sequencing we detected additional viruses, a new member of the family Closteroviridae and a new member of the family Totiviridae. Taking together all results of my studies it is clear that, in order to minimize the risk of serious viral disease in kiwifruit, it is vital to use virus-free propagation material in order to prevent the spread of these viruses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bacterial pathogens of both animals and plants use type III secretion machines to inject virulence proteins into host cells. Although many components of the secretion machinery are conserved among different bacterial species, the substrates for their type III pathways are not. The Yersinia type III machinery recognizes some secretion substrates via a signal that is encoded within the first 15 codons of yop mRNA. These signals can be altered by frameshift mutations without affecting secretion of the encoded polypeptides, suggesting a mechanism whereby translation of yop mRNA is coupled to the translocation of newly synthesized polypeptide. We report that the type III machinery of Erwinia chrysanthemi cloned in Escherichia coli recognizes the secretion signals of yopE and yopQ. Pseudomonas syringae AvrB and AvrPto, two proteins exported by the recombinant Erwinia machine, can also be secreted by the Yersinia type III pathway. Mapping AvrPto sequences sufficient for the secretion of reporter fusions in Yersinia revealed the presence of an mRNA secretion signal. We propose that 11 conserved components of type III secretion machines may recognize signals that couple mRNA translation to polypeptide secretion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Strains of Xanthomonas campestris pv. vesicatoria (Xcv) carrying avrBs2 are specifically recognized by Bs2 pepper plants, resulting in localized cell death and plant resistance. Agrobacterium-mediated transient expression of the Xcv avrBs2 gene in plant cells results in Bs2-dependent cell death, indicating that the AvrBs2 protein alone is sufficient for the activation of disease resistance-mediated cell death in planta. We now provide evidence that AvrBs2 is secreted from Xcv and that secretion is type III (hrp) dependent. N- and C-terminal deletion analysis of AvrBs2 has identified the effector domain of AvrBs2 recognized by Bs2 pepper plants. By using a truncated Pseudomonas syringae AvrRpt2 effector reporter devoid of type III signal sequences, we have localized the minimal region of AvrBs2 required for type III secretion in Xcv. Furthermore, we have identified the region of AvrBs2 required for both type III secretion and translocation to host plants. The mapping of AvrBs2 sequences sufficient for type III delivery also revealed the presence of a potential mRNA secretion signal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Disease resistance in plants is often controlled by a gene-for-gene mechanism in which avirulence (avr) gene products encoded by pathogens are specifically recognized, either directly or indirectly, by plant disease resistance (R) gene products. Members of the NBS-LRR class of R genes encode proteins containing a putative nucleotide binding site (NBS) and carboxyl-terminal leucine-rich repeats (LRRs). Generally, NBS-LRR proteins do not contain predicted transmembrane segments or signal peptides, suggesting they are soluble cytoplasmic proteins. RPM1 is an NBS-LRR protein from Arabidopsis thaliana that confers resistance to Pseudomonas syringae expressing either avrRpm1 or avrB. RPM1 protein was localized by using an epitope tag. In contrast to previous suggestions, RPM1 is a peripheral membrane protein that likely resides on the cytoplasmic face of the plasma membrane. Furthermore, RPM1 is degraded coincident with the onset of the hypersensitive response, suggesting a negative feedback loop controlling the extent of cell death and overall resistance response at the site of infection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two novel type I ribosome-inactivating proteins (RIPs) were found in the storage roots of Mirabilis expansa, an underutilized Andean root crop. The two RIPs, named ME1 and ME2, were purified to homogeneity by ammonium sulfate precipitation, cation-exchange perfusion chromatography, and C4 reverse-phase chromatography. The two proteins were found to be similar in size (27 and 27.5 kD) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and their isoelectric points were determined to be greater than pH 10.0. Amino acid N-terminal sequencing revealed that both ME1 and ME2 had conserved residues characteristic of RIPs. Amino acid composition and western-blot analysis further suggested a structural similarity between ME1 and ME2. ME2 showed high similarity to the Mirabilis jalapa antiviral protein, a type I RIP. Depurination of yeast 26S rRNA by ME1 and ME2 demonstrated their ribosome-inactivating activity. Because these two proteins were isolated from roots, their antimicrobial activity was tested against root-rot microorganisms, among others. ME1 and ME2 were active against several fungi, including Pythium irregulare, Fusarium oxysporum solani, Alternaria solani, Trichoderma reesei, and Trichoderma harzianum, and an additive antifungal effect of ME1 and ME2 was observed. Antibacterial activity of both ME1 and ME2 was observed against Pseudomonas syringae, Agrobacterium tumefaciens, Agrobacterium radiobacter, and others.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent advances in studies of bacterial gene expression have brought the realization that cell-to-cell communication and community behavior are critical for successful interactions with higher organisms. Species-specific cell-to-cell communication is involved in successful pathogenic or symbiotic interactions of a variety of bacteria with plant and animal hosts. One type of cell–cell signaling is acyl-homoserine lactone quorum sensing in Gram-negative bacteria. This type of quorum sensing represents a dedicated communication system that enables a given species to sense when it has reached a critical population density in a host, and to respond by activating expression of genes necessary for continued success in the host. Acyl-homoserine lactone signaling in the opportunistic animal and plant pathogen Pseudomonas aeruginosa is a model for the relationships among quorum sensing, pathogenesis, and community behavior. In the P. aeruginosa model, quorum sensing is required for normal biofilm maturation and for virulence. There are multiple quorum-sensing circuits that control the expression of dozens of specific genes that represent potential virulence loci.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The plant-intracellular interaction of the avirulence protein AvrPto of Pseudomonas syringae pathovar tomato, the agent of bacterial speck disease, and the corresponding tomato resistance protein Pto triggers responses leading to disease resistance. Pto, a serine/threonine protein kinase, also interacts with a putative downstream kinase, Pto-interactor 1, as well as with members of a family of transcription factors Pto-interactors 4, 5, and 6. These proteins are likely involved, respectively, in a phosphorylation cascade resulting in hypersensitive cell death, and in defense gene activation. The mechanism by which the interaction of AvrPto and Pto initiates defense response signaling is not known. To pursue the hypothesis that tertiary interactions are involved, we modified the yeast two-hybrid protein interaction trap and conducted a search for tomato proteins that interact with Pto only in the presence of AvrPto. Five classes of AvrPto-dependent Pto interactors were isolated, and their interaction specificity confirmed. Also, to shed light on a recently demonstrated virulence activity of AvrPto, we conducted a standard two-hybrid screen for tomato proteins in addition to Pto that interact with AvrPto: i.e., potential virulence targets or modifiers of AvrPto. By constructing an N-terminal rather than a C-terminal fusion of AvrPto to the LexA DNA binding domain, we were able to overcome autoactivation by AvrPto and identify four classes of specific AvrPto-interacting proteins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The recently cloned NPR1 gene of Arabidopsis thaliana is a key regulator of acquired resistance responses. Upon induction, NPR1 expression is elevated and the NPR1 protein is activated, in turn inducing expression of a battery of downstream pathogenesis-related genes. In this study, we found that NPR1 confers resistance to the pathogens Pseudomonas syringae and Peronospora parasitica in a dosage-dependent fashion. Overexpression of NPR1 leads to enhanced resistance with no obvious detrimental effect on the plants. Thus, for the first time, a single gene is shown to be a workable target for genetic engineering of nonspecific resistance in plants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Treatment of soybean (Glycine max L. cv Williams 82) cell-suspension cultures with Pseudomonas syringae pv glycinea (Psg) harboring an avirulence gene (avrA) or with yeast elicitor resulted in an oxidative burst characterized by the accumulation of H2O2. This burst, and the resultant induction of glutathione S-transferase transcripts, occurred more rapidly and was more prolonged if cells were simultaneously treated with serine protease inhibitors such as phenylmethylsulfonyl fluoride (PMSF) or diisopropylfluorophosphate. PMSF and diisopropylfluorophosphate potentiate a large oxidative burst in cells exposed to Psg harboring the avrC avirulence gene, which is not recognized by the soybean cultivar used in this study. The potentiated burst was inhibited by diphenylene iodonium, an inhibitor of NADPH oxidase, and by the protein kinase inhibitor K252a. PMSF treatment of elicited cells or cells exposed to Psg:avrA caused a large increase in the accumulation of the isoflavonoid phytoalexin glyceollin; however, this was not associated with increased levels of transcripts encoding key phytoalexin biosynthetic enzymes. Glyceollin accumulation was inhibited by diphenylene iodonium; however, the oxidative burst in cells treated with Psg:avrC and PMSF was not followed by phytoalexin accumulation. We conclude that active oxygen species from the oxidative burst are necessary but not sufficient for inducing isoflavonoid phytoalexin accumulation in soybean cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Peroxidase activity was characterized in lettuce (Lactuca sativa L.) leaf tissue. Changes in the activity and distribution of the enzyme were examined during the development of a nonhost hypersensitive reaction (HR) induced by Pseudomonas syringae (P. s.) pv phaseolicola and in response to an hrp mutant of the bacterium. Assays of activity in tissue extracts revealed pH optima of 4.5, 6.0, 5.5 to 6.0, and 6.0 to 6.5 for the substrates tetramethylbenzidine, guaiacol, caffeic acid, and chlorogenic acid, respectively. Inoculation with water or with wild-type or hrp mutant strains of P. s. pv phaseolicola caused an initial decline in total peroxidase activity; subsequent increases depended on the hydrogen donor used in the assay. Guaiacol peroxidase recovered more rapidly in tissues undergoing the HR, whereas changes in tetramethylbenzidine peroxidase were generally similar in the two interactions. In contrast, increases in chlorogenic acid peroxidase were significantly higher in tissues inoculated with the hrp mutant. During the HR, increased levels of Mn2+/2,4-dichlorophenol-stimulated NADH and NADPH oxidase activities, characteristic of certain peroxidases, were found in intercellular fluids and closely matched the accumulation of H2O2 in the apoplast. Histochemical analysis of peroxidase distribution by electron microscopy revealed a striking, highly localized increase in activity within the endomembrane system and cell wall at the sites of bacterial attachment. However, no clear differences in peroxidase location were observed in tissue challenged by the wild-type strain or the hrp mutant. Our results highlight the significance of the subcellular control of oxidative reactions leading to the generation of reactive oxygen species, cell wall alterations, and the HR.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cucumber (Cucumis sativa) leaves infiltrated with Pseudomonas syringae pv. syringae cells produced a mobile signal for systemic acquired resistance between 3 and 6 h after inoculation. The production of a mobile signal by inoculated leaves was followed by a transient increase in phenylalanine ammonia-lyase (PAL) activity in the petioles of inoculated leaves and in stems above inoculated leaves; with peaks in activity at 9 and 12 h, respectively, after inoculation. In contrast, PAL activity in inoculated leaves continued to rise slowly for at least 18 h. No increases in PAL activity were detected in healthy leaves of inoculated plants. Two benzoic acid derivatives, salicylic acid (SA) and 4-hydroxybenzoic acid (4HBA), began to accumulate in phloem fluids at about the time PAL activity began to increase, reaching maximum concentrations 15 h after inoculation. The accumulation of SA and 4HBA in phloem fluids was unaffected by the removal of all leaves 6 h after inoculation, and seedlings excised from roots prior to inoculation still accumulated high levels of SA and 4HBA. These results suggest that SA and 4HBA are synthesized de novo in stems and petioles in response to a mobile signal from the inoculated leaf.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The plant defense response to microbial pathogens had been studied primarily by using biochemical and physiological techniques. Recently, several laboratories have developed a variety of pathosystems utilizing Arabidopsis thaliana as a model host so that genetic analysis could also be used to study plant defense responses. Utilizing a pathosystem that involves the infection of Arabidopsis with pathogenic pseudomonads, we have cloned the Arabidopsis disease-resistance gene RPS2, which corresponds to the avirulence gene avrRpt2 in a gene-for-gene relationship. RPS2 encodes a 105-kDa protein containing a leucine zipper, a nucleotide binding site, and 14 imperfect leucine-rich repeats. The RPS2 protein is remarkably similar to the product of the tobacco N gene, which confers resistance to tobacco mosaic virus. We have also isolated a series of Arabidopsis mutants that synthesize decreased levels of an Arabidopsis phytoalexin called camalexin. Analysis of these mutants indicated that camalexin does not play a significant role in limiting growth of avirulent Pseudomonas syringae strains during the hypersensitive defense response but that it may play a role in limiting the growth of virulent strains. More generally, we have shown that we can utilize Arabidopsis to systematically dissect the defense response by isolation and characterization of appropriate defense-related mutants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Heterotrimeric G proteinshave been previously linked to plant defense; however a role for the G beta gamma dimer in defense signaling has not been described to date. Using available Arabidopsis (Arabidopsis thaliana) mutants lacking functional G alpha or G beta subunits, we show that defense against the necrotrophic pathogens Alternaria brassicicola and Fusarium oxysporum is impaired in G beta- deficient mutants while G alpha-deficient mutants show slightly increased resistance compared to wild-type Columbia ecotype plants. In contrast, responses to virulent (DC3000) and avirulent (JL1065) strains of Pseudomonas syringae appear to be independent of heterotrimeric G proteins. The induction of a number of defense-related genes in G beta-deficient mutants were severely reduced in response to A. brassicicola infection. In addition, G beta-deficient mutants exhibit decreased sensitivity to a number of methyl jasmonate- induced responses such as induction of the plant defensin gene PDF1.2, inhibition of root elongation, seed germination, and growth of plants in sublethal concentrations of methyl jasmonate. In all cases, the behavior of the G alpha- deficient mutants is coherent with the classic heterotrimeric mechanism of action, indicating that jasmonic acid signaling is influenced by the Gbg functional subunit but not by G alpha. We hypothesize that G beta gamma acts as a direct or indirect enhancer of the jasmonate signaling pathway in plants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Statins are a class of drug that inhibits cholesterol biosynthesis, and are used to treat patients with high serum cholesterol levels. They exert this function by competitively binding to the enzyme 3-hydroxy-3-methylglutaryl-CoenzymeA reductase (HMGR), which catalyses the formation of mevalonate, a rate-limiting step in cholesterol biosynthesis. In addition, statins have what are called “pleiotropic effects”, which include the reduction of inflammation, immunomodulation, and antimicrobial effects. Statins can also improve survival of patients with sepsis and pneumonia. Cystic fibrosis (CF) is the most common recessive inherited disease in the Caucasian population, which is characterised by factors including, but not limited to, excessive lung inflammation and increased susceptibility to infection. Therefore, the overall objective of this study was to examine the effects of statins on CFassociated bacterial pathogens and the host response. In this work, the prevalence of HMGR was examined in respiratory pathogens, and several CF-associated pathogens were found to possess homologues of this enzyme. HMGR homology was analysed in Staphylococcus aureus, Burkholderia cenocepacia and Streptococcus pneumoniae, and the HMGR of B. cenocepacia was found to have significant conservation to that of Pseudomonas mevalonii, which is the most widely-characterised bacterial HMGR. However, in silico analysis revealed that, unlike S. aureus and S. pneumoniae, B. cenocepacia did not possess homologues of other mevalonate pathway proteins, and that the HMGR of B. cenocepacia appeared to be involved in an alternative metabolic pathway. The effect of simvastatin was subsequently tested on the growth and virulence of S. aureus, B. cenocepacia and S. pneumoniae. Simvastatin inhibited the growth of all 3 species in a dose-dependent manner. In addition, statin treatment also attenuated biofilm formation of all 3 species, and reduced in vitro motility of S. aureus. Interestingly, simvastatin also increased the potency of the aminoglycoside antibiotic gentamicin against B. cenocepacia. The impact of statins was subsequently tested on the predominant CF-associated pathogen Pseudomonas aeruginosa, which does not possess a HMGR homologue. Mevastatin, lovastatin and simvastatin did not influence the growth of this species. However, sub-inhibitory statin concentrations reduced the swarming motility and biofilm formation of P. aeruginosa. The influence of statins was also examined on Type 3 toxin secretion, quorum sensing and chemotaxis, and no statin effect was observed on any of these phenotypes. Statins did not appear to have a characteristic effect on the P. aeruginosa transcriptome. However, a mutant library screen revealed that the effect of statins on P. aeruginosa biofilm was mediated through the PvrR regulator and the Cup fimbrial biosynthesis genes. Furthermore, proteomic analysis demonstrated that 6 proteins were reproducibly induced by simvastatin in the P. aeruginosa swarming cells. The effect of statins on the regulation of the host-P. aeruginosa immune response was also investigated. Statin treatment increased expression of the pro-inflammatory cytokines IL-8 and CCL20 in lung epithelial cells, but did not attenuate P. aeruginosa-mediated inflammatory gene induction. In fact, simvastatin and P. aeruginosa caused a synergistic effect on CCL20 expression. The expression of the transcriptional regulators KLF2 and KLF6 was also increased by statins and P. aeruginosa, with the induction of KLF6 by simvastatin proving to be a novel effect. Interestingly, both statins and P. aeruginosa were capable of inducing alternative splicing of KLF6. P. aeruginosa was found to induce KLF6 alternative splicing by way of the type 3 secreted toxin ExoS. In addition, a mechanistic role was elucidated for KLF6 in the lung, as it was determined that statin-mediated induction of this protein was responsible for the induction of the host response genes CCL20 and iNOS. Moreover, statin treatment caused a slight increase in infection-related cytotoxicity, and increased bacterial adhesion to cells. Taken together, these data demonstrate that statins can reduce the virulence of CFassociated bacterial pathogens and alter host response effectors. Furthermore, novel statin effectors were identified in both bacterial and host cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The airways of most people with cystic fibrosis are colonized with biofilms of the Gram-negative, opportunistic pathogen Pseudomonas aeruginosa. Delivery of antibiotics directly to the lung in the form of dry powder aerosols offers the potential to achieve high local concentrations directly to the biofilms. Unfortunately, current aerosolised antibiotic regimes are unable to efficiently eradicate these biofilms from the airways. We investigated the ability of the innate antimicrobial, lactoferrin, to enhance the activity of two aminoglycoside antibiotics (tobramycin and gentamicin) against biofilms of P. aeruginosa strain PAO1. Biofilms were prepared in 96 well polystyrene plates. Combinations of the antibiotics and various lactoferrin preparations were spray dried. The bacterial cell viability of the various spray dried combinations was determined. Iron-free lactoferrin (apo lactoferrin) induced a 3-log reduction in the killing of planktonic cell by the aminoglycoside antibiotics (p < 0.01) and also reduced both the formation and persistence of P. aeruginosa biofilms (p < 0.01). Combinations of lactoferrin and an aminoglycoside displays potential as an effective new therapeutic strategy in the treatment of P. aeruginosa biofilms infections such as those typical of the CF lungs.