879 resultados para Particle-based Model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivated by a recently proposed biologically inspired face recognition approach, we investigated the relation between human behavior and a computational model based on Fourier-Bessel (FB) spatial patterns. We measured human recognition performance of FB filtered face images using an 8-alternative forced-choice method. Test stimuli were generated by converting the images from the spatial to the FB domain, filtering the resulting coefficients with a band-pass filter, and finally taking the inverse FB transformation of the filtered coefficients. The performance of the computational models was tested using a simulation of the psychophysical experiment. In the FB model, face images were first filtered by simulated V1- type neurons and later analyzed globally for their content of FB components. In general, there was a higher human contrast sensitivity to radially than to angularly filtered images, but both functions peaked at the 11.3-16 frequency interval. The FB-based model presented similar behavior with regard to peak position and relative sensitivity, but had a wider frequency band width and a narrower response range. The response pattern of two alternative models, based on local FB analysis and on raw luminance, strongly diverged from the human behavior patterns. These results suggest that human performance can be constrained by the type of information conveyed by polar patterns, and consequently that humans might use FB-like spatial patterns in face processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the many models developed for phosphorus concentration prediction at differing spatial and temporal scales, there has been little effort to quantify uncertainty in their predictions. Model prediction uncertainty quantification is desirable, for informed decision-making in river-systems management. An uncertainty analysis of the process-based model, integrated catchment model of phosphorus (INCA-P), within the generalised likelihood uncertainty estimation (GLUE) framework is presented. The framework is applied to the Lugg catchment (1,077 km2), a River Wye tributary, on the England–Wales border. Daily discharge and monthly phosphorus (total reactive and total), for a limited number of reaches, are used to initially assess uncertainty and sensitivity of 44 model parameters, identified as being most important for discharge and phosphorus predictions. This study demonstrates that parameter homogeneity assumptions (spatial heterogeneity is treated as land use type fractional areas) can achieve higher model fits, than a previous expertly calibrated parameter set. The model is capable of reproducing the hydrology, but a threshold Nash-Sutcliffe co-efficient of determination (E or R 2) of 0.3 is not achieved when simulating observed total phosphorus (TP) data in the upland reaches or total reactive phosphorus (TRP) in any reach. Despite this, the model reproduces the general dynamics of TP and TRP, in point source dominated lower reaches. This paper discusses why this application of INCA-P fails to find any parameter sets, which simultaneously describe all observed data acceptably. The discussion focuses on uncertainty of readily available input data, and whether such process-based models should be used when there isn’t sufficient data to support the many parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concentrations of sulfate, black carbon (BC) and other aerosols in the Arctic are characterized by high values in late winter and spring (so-called Arctic Haze) and low values in summer. Models have long been struggling to capture this seasonality and especially the high concentrations associated with Arctic Haze. In this study, we evaluate sulfate and BC concentrations from eleven different models driven with the same emission inventory against a comprehensive pan-Arctic measurement data set over a time period of 2 years (2008–2009). The set of models consisted of one Lagrangian particle dispersion model, four chemistry transport models (CTMs), one atmospheric chemistry-weather forecast model and five chemistry climate models (CCMs), of which two were nudged to meteorological analyses and three were running freely. The measurement data set consisted of surface measurements of equivalent BC (eBC) from five stations (Alert, Barrow, Pallas, Tiksi and Zeppelin), elemental carbon (EC) from Station Nord and Alert and aircraft measurements of refractory BC (rBC) from six different campaigns. We find that the models generally captured the measured eBC or rBC and sulfate concentrations quite well, compared to previous comparisons. However, the aerosol seasonality at the surface is still too weak in most models. Concentrations of eBC and sulfate averaged over three surface sites are underestimated in winter/spring in all but one model (model means for January–March underestimated by 59 and 37 % for BC and sulfate, respectively), whereas concentrations in summer are overestimated in the model mean (by 88 and 44 % for July–September), but with overestimates as well as underestimates present in individual models. The most pronounced eBC underestimates, not included in the above multi-site average, are found for the station Tiksi in Siberia where the measured annual mean eBC concentration is 3 times higher than the average annual mean for all other stations. This suggests an underestimate of BC sources in Russia in the emission inventory used. Based on the campaign data, biomass burning was identified as another cause of the modeling problems. For sulfate, very large differences were found in the model ensemble, with an apparent anti-correlation between modeled surface concentrations and total atmospheric columns. There is a strong correlation between observed sulfate and eBC concentrations with consistent sulfate/eBC slopes found for all Arctic stations, indicating that the sources contributing to sulfate and BC are similar throughout the Arctic and that the aerosols are internally mixed and undergo similar removal. However, only three models reproduced this finding, whereas sulfate and BC are weakly correlated in the other models. Overall, no class of models (e.g., CTMs, CCMs) performed better than the others and differences are independent of model resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a modeling technique for small-signal stability assessment of unbalanced power systems is presented. Since power distribution systems are inherently unbalanced, due to its lines and loads characteristics, and the penetration of distributed generation into these systems is increasing nowadays, such a tool is needed in order to ensure a secure and reliable operation of these systems. The main contribution of this paper is the development of a phasor-based model for the study of dynamic phenomena in unbalanced power systems. Using an assumption on the net torque of the generator, it is possible to precisely define an equilibrium point for the phasor model of the system, thus enabling its linearization around this point, and, consequently, its eigenvalue/eigenvector analysis for small-signal stability assessment. The modeling technique presented here was compared to the dynamic behavior observed in ATP simulations and the results show that, for the generator and controller models used, the proposed modeling approach is adequate and yields reliable and precise results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider stochastic individual-based models for social behaviour of groups of animals. In these models the trajectory of each animal is given by a stochastic differential equation with interaction. The social interaction is contained in the drift term of the SDE. We consider a global aggregation force and a short-range repulsion force. The repulsion range and strength gets rescaled with the number of animals N. We show that for N tending to infinity stochastic fluctuations disappear and a smoothed version of the empirical process converges uniformly towards the solution of a nonlinear, nonlocal partial differential equation of advection-reaction-diffusion type. The rescaling of the repulsion in the individual-based model implies that the corresponding term in the limit equation is local while the aggregation term is non-local. Moreover, we discuss the effect of a predator on the system and derive an analogous convergence result. The predator acts as an repulsive force. Different laws of motion for the predator are considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents some ideas about a new neural network architecture that can be compared to a Taylor analysis when dealing with patterns. Such architecture is based on lineal activation functions with an axo-axonic architecture. A biological axo-axonic connection between two neurons is defined as the weight in a connection in given by the output of another third neuron. This idea can be implemented in the so called Enhanced Neural Networks in which two Multilayer Perceptrons are used; the first one will output the weights that the second MLP uses to computed the desired output. This kind of neural network has universal approximation properties even with lineal activation functions. There exists a clear difference between cooperative and competitive strategies. The former ones are based on the swarm colonies, in which all individuals share its knowledge about the goal in order to pass such information to other individuals to get optimum solution. The latter ones are based on genetic models, that is, individuals can die and new individuals are created combining information of alive one; or are based on molecular/celular behaviour passing information from one structure to another. A swarm-based model is applied to obtain the Neural Network, training the net with a Particle Swarm algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although most of the research on Cognitive Radio is focused on communication bands above the HF upper limit (30 MHz), Cognitive Radio principles can also be applied to HF communications to make use of the extremely scarce spectrum more efficiently. In this work we consider legacy users as primary users since these users transmit without resorting to any smart procedure, and our stations using the HFDVL (HF Data+Voice Link) architecture as secondary users. Our goal is to enhance an efficient use of the HF band by detecting the presence of uncoordinated primary users and avoiding collisions with them while transmitting in different HF channels using our broad-band HF transceiver. A model of the primary user activity dynamics in the HF band is developed in this work to make short-term predictions of the sojourn time of a primary user in the band and avoid collisions. It is based on Hidden Markov Models (HMM) which are a powerful tool for modelling stochastic random processes and are trained with real measurements of the 14 MHz band. By using the proposed HMM based model, the prediction model achieves an average 10.3% prediction error rate with one minute-long channel knowledge but it can be reduced when this knowledge is extended: with the previous 8 min knowledge, an average 5.8% prediction error rate is achieved. These results suggest that the resulting activity model for the HF band could actually be used to predict primary users activity and included in a future HF cognitive radio based station.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acquired brain injury (ABI) 1-2 refers to any brain damage occurring after birth. It usually causes certain damage to portions of the brain. ABI may result in a significant impairment of an individuals physical, cognitive and/or psychosocial functioning. The main causes are traumatic brain injury (TBI), cerebrovascular accident (CVA) and brain tumors. The main consequence of ABI is a dramatic change in the individuals daily life. This change involves a disruption of the family, a loss of future income capacity and an increase of lifetime cost. One of the main challenges in neurorehabilitation is to obtain a dysfunctional profile of each patient in order to personalize the treatment. This paper proposes a system to generate a patient s dysfunctional profile by integrating theoretical, structural and neuropsychological information on a 3D brain imaging-based model. The main goal of this dysfunctional profile is to help therapists design the most suitable treatment for each patient. At the same time, the results obtained are a source of clinical evidence to improve the accuracy and quality of our rehabilitation system. Figure 1 shows the diagram of the system. This system is composed of four main modules: image-based extraction of parameters, theoretical modeling, classification and co-registration and visualization module.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La adecuada estimación de avenidas de diseño asociadas a altos periodos de retorno es necesaria para el diseño y gestión de estructuras hidráulicas como presas. En la práctica, la estimación de estos cuantiles se realiza normalmente a través de análisis de frecuencia univariados, basados en su mayoría en el estudio de caudales punta. Sin embargo, la naturaleza de las avenidas es multivariada, siendo esencial tener en cuenta características representativas de las avenidas, tales como caudal punta, volumen y duración del hidrograma, con el fin de llevar a cabo un análisis apropiado; especialmente cuando el caudal de entrada se transforma en un caudal de salida diferente durante el proceso de laminación en un embalse o llanura de inundación. Los análisis de frecuencia de avenidas multivariados han sido tradicionalmente llevados a cabo mediante el uso de distribuciones bivariadas estándar con el fin de modelar variables correlacionadas. Sin embargo, su uso conlleva limitaciones como la necesidad de usar el mismo tipo de distribuciones marginales para todas las variables y la existencia de una relación de dependencia lineal entre ellas. Recientemente, el uso de cópulas se ha extendido en hidrología debido a sus beneficios en relación al contexto multivariado, permitiendo superar los inconvenientes de las técnicas tradicionales. Una copula es una función que representa la estructura de dependencia de las variables de estudio, y permite obtener la distribución de frecuencia multivariada de dichas variables mediante sus distribuciones marginales, sin importar el tipo de distribución marginal utilizada. La estimación de periodos de retorno multivariados, y por lo tanto, de cuantiles multivariados, también se facilita debido a la manera en la que las cópulas están formuladas. La presente tesis doctoral busca proporcionar metodologías que mejoren las técnicas tradicionales usadas por profesionales para estimar cuantiles de avenida más adecuados para el diseño y la gestión de presas, así como para la evaluación del riesgo de avenida, mediante análisis de frecuencia de avenidas bivariados basados en cópulas. Las variables consideradas para ello son el caudal punta y el volumen del hidrograma. Con el objetivo de llevar a cabo un estudio completo, la presente investigación abarca: (i) el análisis de frecuencia de avenidas local bivariado centrado en examinar y comparar los periodos de retorno teóricos basados en la probabilidad natural de ocurrencia de una avenida, con el periodo de retorno asociado al riesgo de sobrevertido de la presa bajo análisis, con el fin de proporcionar cuantiles en una estación de aforo determinada; (ii) la extensión del enfoque local al regional, proporcionando un procedimiento completo para llevar a cabo un análisis de frecuencia de avenidas regional bivariado para proporcionar cuantiles en estaciones sin aforar o para mejorar la estimación de dichos cuantiles en estaciones aforadas; (iii) el uso de cópulas para investigar tendencias bivariadas en avenidas debido al aumento de los niveles de urbanización en una cuenca; y (iv) la extensión de series de avenida observadas mediante la combinación de los beneficios de un modelo basado en cópulas y de un modelo hidrometeorológico. Accurate design flood estimates associated with high return periods are necessary to design and manage hydraulic structures such as dams. In practice, the estimate of such quantiles is usually done via univariate flood frequency analyses, mostly based on the study of peak flows. Nevertheless, the nature of floods is multivariate, being essential to consider representative flood characteristics, such as flood peak, hydrograph volume and hydrograph duration to carry out an appropriate analysis; especially when the inflow peak is transformed into a different outflow peak during the routing process in a reservoir or floodplain. Multivariate flood frequency analyses have been traditionally performed by using standard bivariate distributions to model correlated variables, yet they entail some shortcomings such as the need of using the same kind of marginal distribution for all variables and the assumption of a linear dependence relation between them. Recently, the use of copulas has been extended in hydrology because of their benefits regarding dealing with the multivariate context, as they overcome the drawbacks of the traditional approach. A copula is a function that represents the dependence structure of the studied variables, and allows obtaining the multivariate frequency distribution of them by using their marginal distributions, regardless of the kind of marginal distributions considered. The estimate of multivariate return periods, and therefore multivariate quantiles, is also facilitated by the way in which copulas are formulated. The present doctoral thesis seeks to provide methodologies that improve traditional techniques used by practitioners, in order to estimate more appropriate flood quantiles for dam design, dam management and flood risk assessment, through bivariate flood frequency analyses based on the copula approach. The flood variables considered for that goal are peak flow and hydrograph volume. In order to accomplish a complete study, the present research addresses: (i) a bivariate local flood frequency analysis focused on examining and comparing theoretical return periods based on the natural probability of occurrence of a flood, with the return period associated with the risk of dam overtopping, to estimate quantiles at a given gauged site; (ii) the extension of the local to the regional approach, supplying a complete procedure for performing a bivariate regional flood frequency analysis to either estimate quantiles at ungauged sites or improve at-site estimates at gauged sites; (iii) the use of copulas to investigate bivariate flood trends due to increasing urbanisation levels in a catchment; and (iv) the extension of observed flood series by combining the benefits of a copula-based model and a hydro-meteorological model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DEM modelling of the motion of coarse fractions of the charge inside SAG mills has now been well established for more than a decade. In these models the effect of slurry has broadly been ignored due to its complexity. Smoothed particle hydrodynamics (SPH) provides a particle based method for modelling complex free surface fluid flows and is well suited to modelling fluid flow in mills. Previous modelling has demonstrated the powerful ability of SPH to capture dynamic fluid flow effects such as lifters crashing into slurry pools, fluid draining from lifters, flow through grates and pulp lifter discharge. However, all these examples were limited by the ability to model only the slurry in the mill without the charge. In this paper, we represent the charge as a dynamic porous media through which the SPH fluid is then able to flow. The porous media properties (specifically the spatial distribution of porosity and velocity) are predicted by time averaging the mill charge predicted using a large scale DEM model. This allows prediction of transient and steady state slurry distributions in the mill and allows its variation with operating parameters, slurry viscosity and slurry volume, to be explored. (C) 2006 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – The purpose of this research is to develop a holistic approach to maximize the customer service level while minimizing the logistics cost by using an integrated multiple criteria decision making (MCDM) method for the contemporary transshipment problem. Unlike the prevalent optimization techniques, this paper proposes an integrated approach which considers both quantitative and qualitative factors in order to maximize the benefits of service deliverers and customers under uncertain environments. Design/methodology/approach – This paper proposes a fuzzy-based integer linear programming model, based on the existing literature and validated with an example case. The model integrates the developed fuzzy modification of the analytic hierarchy process (FAHP), and solves the multi-criteria transshipment problem. Findings – This paper provides several novel insights about how to transform a company from a cost-based model to a service-dominated model by using an integrated MCDM method. It suggests that the contemporary customer-driven supply chain remains and increases its competitiveness from two aspects: optimizing the cost and providing the best service simultaneously. Research limitations/implications – This research used one illustrative industry case to exemplify the developed method. Considering the generalization of the research findings and the complexity of the transshipment service network, more cases across multiple industries are necessary to further enhance the validity of the research output. Practical implications – The paper includes implications for the evaluation and selection of transshipment service suppliers, the construction of optimal transshipment network as well as managing the network. Originality/value – The major advantages of this generic approach are that both quantitative and qualitative factors under fuzzy environment are considered simultaneously and also the viewpoints of service deliverers and customers are focused. Therefore, it is believed that it is useful and applicable for the transshipment service network design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, there has been an increasing interest in learning a distributed representation of word sense. Traditional context clustering based models usually require careful tuning of model parameters, and typically perform worse on infrequent word senses. This paper presents a novel approach which addresses these limitations by first initializing the word sense embeddings through learning sentence-level embeddings from WordNet glosses using a convolutional neural networks. The initialized word sense embeddings are used by a context clustering based model to generate the distributed representations of word senses. Our learned representations outperform the publicly available embeddings on half of the metrics in the word similarity task, 6 out of 13 sub tasks in the analogical reasoning task, and gives the best overall accuracy in the word sense effect classification task, which shows the effectiveness of our proposed distributed distribution learning model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The distribution and abundance of the American crocodile (Crocodylus acutus) in the Florida Everglades is dependent on the timing, amount, and location of freshwater flow. One of the goals of the Comprehensive Everglades Restoration Plan (CERP) is to restore historic freshwater flows to American crocodile habitat throughout the Everglades. To predict the impacts on the crocodile population from planned restoration activities, we created a stage-based spatially explicit crocodile population model that incorporated regional hydrology models and American crocodile research and monitoring data. Growth and survival were influenced by salinity, water depth, and density-dependent interactions. A stage-structured spatial model was used with discrete spatial convolution to direct crocodiles toward attractive sources where conditions were favorable. The model predicted that CERP would have both positive and negative impacts on American crocodile growth, survival, and distribution. Overall, crocodile populations across south Florida were predicted to decrease approximately 3 % with the implementation of CERP compared to future conditions without restoration, but local increases up to 30 % occurred in the Joe Bay area near Taylor Slough, and local decreases up to 30 % occurred in the vicinity of Buttonwood Canal due to changes in salinity and freshwater flows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adjoint methods have proven to be an efficient way of calculating the gradient of an objective function with respect to a shape parameter for optimisation, with a computational cost nearly independent of the number of the design variables [1]. The approach in this paper links the adjoint surface sensitivities (gradient of objective function with respect to the surface movement) with the parametric design velocities (movement of the surface due to a CAD parameter perturbation) in order to compute the gradient of the objective function with respect to CAD variables.
For a successful implementation of shape optimization strategies in practical industrial cases, the choice of design variables or parameterisation scheme used for the model to be optimized plays a vital role. Where the goal is to base the optimization on a CAD model the choices are to use a NURBS geometry generated from CAD modelling software, where the position of the NURBS control points are the optimisation variables [2] or to use the feature based CAD model with all of the construction history to preserve the design intent [3]. The main advantage of using the feature based model is that the optimized model produced can be directly used for the downstream applications including manufacturing and process planning.
This paper presents an approach for optimization based on the feature based CAD model, which uses CAD parameters defining the features in the model geometry as the design variables. In order to capture the CAD surface movement with respect to the change in design variable, the “Parametric Design Velocity” is calculated, which is defined as the movement of the CAD model boundary in the normal direction due to a change in the parameter value.
The approach presented here for calculating the design velocities represents an advancement in terms of capability and robustness of that described by Robinson et al. [3]. The process can be easily integrated to most industrial optimisation workflows and is immune to the topology and labelling issues highlighted by other CAD based optimisation processes. It considers every continuous (“real value”) parameter type as an optimisation variable, and it can be adapted to work with any CAD modelling software, as long as it has an API which provides access to the values of the parameters which control the model shape and allows the model geometry to be exported. To calculate the movement of the boundary the methodology employs finite differences on the shape of the 3D CAD models before and after the parameter perturbation. The implementation procedure includes calculating the geometrical movement along a normal direction between two discrete representations of the original and perturbed geometry respectively. Parametric design velocities can then be directly linked with adjoint surface sensitivities to extract the gradients to use in a gradient-based optimization algorithm.
The optimisation of a flow optimisation problem is presented, in which the power dissipation of the flow in an automotive air duct is to be reduced by changing the parameters of the CAD geometry created in CATIA V5. The flow sensitivities are computed with the continuous adjoint method for a laminar and turbulent flow [4] and are combined with the parametric design velocities to compute the cost function gradients. A line-search algorithm is then used to update the design variables and proceed further with optimisation process.