113 resultados para Paraquat


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In aerobic organisms, protection against oxidative damage involves the combined action of highly specialized antioxidant enzymes, such as superoxide dismutase (SOD) and catalase. Here we describe the isolation and characterization of another gene in the yeast Saccharomyces cerevisiae that plays a critical role in detoxification of reactive oxygen species. This gene, named ATX1, was originally isolated by its ability to suppress oxygen toxicity in yeast lacking SOD. ATX1 encodes a 8.2-kDa polypeptide exhibiting significant similarity and identity to various bacterial metal transporters. Potential ATX1 homologues were also identified in multicellular eukaryotes, including the plants Arabidopsis thaliana and Oryza sativa and the nematode Caenorhabditis elegans. In yeast cells, ATX1 evidently acts in the transport and/or partitioning of copper, and this role in copper homeostasis appears to be directly relevant to the ATX1 suppression of oxygen toxicity: ATX1 was incapable of compensating for SOD when cells were depleted of exogenous copper. Strains containing a deletion in the chromosomal ATX1 locus were generated. Loss of ATX1 function rendered both mutant and wild-type SOD strains hypersensitive toward paraquat (a generator of superoxide anion) and was also associated with an increased sensitivity toward hydrogen peroxide. Hence, ATX1 protects cells against the toxicity of both superoxide anion and hydrogen peroxide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipid-mobilising factor (LMF) is produced by cachexia-inducing tumours and is involved in the degradation of adipose tissue, with increased oxidation of the released fatty acids through an induction of uncoupling protein (UCP) expression. Since UCP-2 is thought to be involved in the detoxification of free radicals if LMF induced UCP-2 expression in tumour cells, it might attenuate free radical toxicity. As a model system we have used MAC13 tumour cells, which do not produce LMF. Addition of LMF caused a concentration-dependent increase in UCP-2 expression, as determined by immunoblotting. This effect was attenuated by the β3 antagonist SR59230A, suggesting that it was mediated through a β3 adrenoreceptor. Co-incubation of LMF with MAC13 cells reduced the growth-inhibitory effects of bleomycin, paraquat and hydrogen peroxide, known to be free radical generators, but not chlorambucil, an alkylating agent. There was no effect of LMF alone on cellular proliferation. These results indicate that LMF antagonises the antiproliferative effect of agents working through a free radical mechanism, and may partly explain the unresponsiveness to the chemotherapy of cachexia-inducing tumours. © 2004 Cancer Research UK.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Today, speciality use organoclays are being developed for an increasingly large number of specific applications. Many of these, including use in cosmetics, polishes, greases and paints, require that the material be free from abrasive impurities so that the product retains a smooth `feel'. The traditional `wet' method preparation of organoclays inherently removes abrasives naturally present in the parent mineral clay, but it is time-consuming and expensive. The primary objective of this thesis was to explore the alternative `dry' method (which is both quicker and cheaper but which provides no refining of the parent clay) as a process, and to examine the nature of the organoclays produced, for the production of a wide range of commercially usable organophilic clays in a facile way. Natural Wyoming bentonite contains two quite different types of silicate surface (that of the clay mineral montmorillonite and that of a quartz impurity) that may interact with the cationic surfactant added in the `dry' process production of organoclays. However, it is oil shale, and not the quartz, that is chiefly responsible for the abrasive nature of the material, although air refinement in combination with the controlled milling of the bentonite as a pretreatment may offer a route to its removal. Ion exchange of Wyoming bentonite with a long chain quaternary ammonium salt using the `dry' process affords a partially exchanged, 69-78%, organoclay, with a monolayer formation of ammonium ions in the interlayer. Excess ion pairs are sorbed on the silicate surfaces of both the clay mineral and the quartz impurity phases. Such surface sorption is enhanced by the presence of very finely divided, super paramagnetic, Fe2O3 or Fe(O)(OH) contaminating the surfaces of the major mineral components. The sorbed material is labile to washing, and induces a measurable shielding of the 29Si nuclei in both clay and quartz phases in the MAS NMR experiment, due to an anisotropic magnetic susceptibility effect. XRD data for humidified samples reveal the interlamellar regions to be strongly hydrophobic, with the by-product sodium chloride being expelled to the external surfaces. Many organic cations will exchange onto a clay. The tetracationic cyclophane, and multipurpose receptor, cyclobis(paraquat-p-phenylene) undergoes ion exchange onto Wyoming bentonite to form a pillared clay with a very regular gallery height. The major plane of the cyclophane is normal to the silicate surfaces, thus allowing the cavity to remain available for complexation. A series of group VI substituted o-dimethoxybenzenes were introduced, and shown to participate in host/guest interactions with the cyclophane. Evidence is given which suggests that the binding of the host structure to a clay substrate offers advantages, not only of transportability and usability but of stability, to the charge-transfer complex which may prove useful in a variety of commercial applications. The fundamental relationship between particle size, cation exchange capacity and chemical composition of clays was also examined. For Wyoming bentonite the extent of isomorphous substitution increases with decreasing particle size, causing the CEC to similarly increase, although the isomorphous substitution site: edge site ratio remains invarient throughout the particle size range studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer cachexia comprises unintentional and debilitating weight loss associated with certain tumour types. Fat loss in cachexia is mediated by a 43kDa Lipid Mobilising Factor (LMF) sharing homology with endogenous Zinc-α2-Glycoprotein (ZAG). LMF and ZAG induced significant lipolysis in isolated epidydimal adipose tissue. This is attenuated by co-incubation with 10μM of antagonist SR59230A and partially attenuated by 25μM PD098059 (indicating β3-AR and MAPK involvement respectively). LMF/ZAG induced in vitro lipid depletion in differentiated 3T3-L1 adipocytes that seen to comprise a significant increase in lipolysis (p<0.01), with only a modest decrease in lipid synthesis (p=0.09). ZAG significantly increased in vitro protein synthesis (p<0.01) in C2C12 myotubes (without an effect on protein degradation). This increase was activated at transcription and attenuated by co-incubation with 10μM SR59230A. Proteolytic digestion of ZAG and LMF followed by sephadex G50 chromatography yielded active fragments of 6-15kDa, indication the entire molecule was not required for bioactivity. Cachexigenic MAC16 cells demonstrated significant in vitro ZAG expression over non-cachexigenic MAC13 cells (p<0.001). WAT and BAT excised from MAC16 mice of varying weight loss demonstrated increased ZAG expression compared to controls. Dosing of NMRI mice with s/c ZAG failed to reproduce this up-regulation, thus another cachectic factor is responsible. 0.58nM LMF conferred significant protection against hydrogen peroxide, paraquat and bleomycin-induced oxidative stress in the non-cachexigenic MAC13 cell line. This protection was attenuated by 10μM SR59230A indicating a β3-AR mediated effect. In addition, 0.58nM LMF significantly up regulated UCP2 expression (p<0.001), (a mitochondrial protein implicated in the detoxification of ROS) implying this to be the mechanism by which survival was achieved. In vitro, LMF caused significant up-regulation of UCP1 in BAT and UCP2 and 3 in C2C12 myotubes. This increase in uncoupling protein expression further potentiates the negative energy balance and wasting observed in cachexia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Hydrocyanines are widely used as fluorogenic probes to monitor reactive oxygen species (ROS) generation in cells. Their brightness, stability to autoxidation and photobleaching, large signal change upon oxidation, pH independence and red/near infrared emission are particularly attractive for imaging ROS in live tissue. Methods: Using confocal fluorescence microscopy we have examined an interference of mitochondrial membrane potential (ΔΨm) with fluorescence intensity and localisation of a commercial hydro-Cy3 probe in respiring and non-respiring colon carcinoma HCT116 cells. Results: We found that the oxidised (fluorescent) form of hydro-Cy3 is highly homologous to the common ΔΨm-sensitive probe JC-1, which accumulates and aggregates only in ‘energised’ negatively charged mitochondrial matrix. Therefore, hydro-Cy3 oxidised by hydroxyl and superoxide radicals tends to accumulate in mitochondrial matrix, but dissipates and loses brightness as soon as ΔΨm is compromised. Experiments with mitochondrial inhibitor oligomycin and uncoupler FCCP, as well as a common ROS producer paraquat demonstrated that signals of the oxidised hydro-Cy3 probe rapidly and strongly decrease upon mitochondrial depolarisation, regardless of the rate of cellular ROS production. Conclusions: While analysing ROS-derived fluorescence of commercial hydrocyanine probes, an accurate control of ΔΨm is required. General significance: If not accounted for, non-specific effect of mitochondrial polarisation state on the behaviour of oxidised hydrocyanines can cause artefacts and data misinterpretation in ROS studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis explores two distinct parts of mitochondrial physiology: the role of mitochondria in generation of reactive oxygen species (ROS) and mitochondrial morphology and dynamics within cells. The first area of research is covered in Chapters 1-8. Mitochondrial biofunctionality and ROS production are discussed in Chapter 1, followed by the strategy of targeting bioactive compounds to mitochondria by linking them to lipophilic triphenylphosphonium cations (TPP) (Chapter 2). ROS sensors relevant to the research are reviewed in Chapter 3. Chapter 4 presents design and synthesis of novel probes for superoxide detection in mitochondria (MitoNeo-D), cytosol (Neo-D) and extracellular environment (ExCellNeo-D). The results of biological validation of MitoNeo-D and Neo-D performed in the MRC MBU in Cambridge are presented in Chapter 5. A dicationic hydrogen peroxide sensor that utilizes in situ click chemistry is discussed in Chapter 6. Preliminary work on the synthesis of mitochondria-targeted superoxide generators, which led to the development of mitochondria-targeted analogue of paraquat, MitoPQ, is presented in Chapter 7. A set of bifunctional probes (BCN-Mal, BCN-E-BCN and Mito-iTag) for assessing the redox states of protein thiols is discussed in Chapter 8 along with their biological validation. The second part of the thesis is aimed at the study of mitochondrial morphology and dynamics and is presented in Chapters 9-11. Chapter 9 provides background on the classes of fluorophores relevant to the research, the phenomenon of fluorescence quenching and the principle of photoactivation with examples of photoactivatable fluorophores. Next, the background on mitochondrial morphology and heterogeneity is presented in Chapter 10, followed by the ways of imaging and tracking mitochondria within cells by conventional fluorophores and by photoactivatable fluorophores exploiting super-resolution microscopy. Chapter 11 presents the design and synthesis of four photoactivatable fluorophores for mitochondrial tracking, MitoPhotoRhod110, MitoPhotoNIR, Photo-E+, MitoPhoto-E+, along with results of biological validation of MitoPhotoNIR. The results and discussion concludes with Chapter 12, which is a summary and suggestions for future work, followed by the chemistry experimental procedures (Chapter 13), materials and methods for biological experiments (Chapter 14) and references.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

he region of Ribeirão Preto, São Paulo State, Brazil, is located over recharge area of the Guarany aquifer, the most important source of groundwater in the South Central region of the country. This region is also the most important sugarcane producing area of the country which produces a large amount of the ethanol. This study was conducted to determine the potential risk of herbicide groundwater contamination. The leaching risk potential of herbicides to groundwater was conducted using the weather simulator ?Weather Generator? (WGEN) coupled with the model ?Chemical Movement Trough Layered Soils? (CMLS94). The following herbicides were evaluated in clayey and sandy soils (Typic Haplorthox and Typic Quartzipsamment soils) found in the region: ametryn (N-ethyl-N\'-(1- methylethyl)-6-(methylthio)-1,3,5-triazine-2,4-diamine), atrazine (6-chloro-N-ethyl-N\'-(1-methylethyl)-1,3,5-triazine- 2,4-diamine), clomazone (2-[(2-chlorophenyl)methyl]-4,4-dimethyl-3-isoxazolidinone), diuron (3,4-dichlorophenyl)- N,N-dimethylurea), halosulfuron (3-chloro-5-[(4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl], hexazinone (3- cyclohexyl-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4 (1H,3H)-dione), imazapic ((±)-2-[4,5-dihydro-4-methyl-4- (1-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-methyl-3-pyridinecarboxylic acid), imazapyr ((±)-2-[4,5-dihydro-4-methyl- 4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-3-pyridinecarboxylic acid), MCPA (4-chloro-2-methylphenoxy)acetic acid), metribuzin (4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one), MSMA (Amonosodium salt of MAA), paraquat (1,1\'-dimethyl-4,4\'-bipyridinium ion), pendimethalin (N-(1-ethylpropyl)-3,4-dimethyl-2,6- dinitrobenzenamine), picloram (4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid), simazine (6-chloro-N,N\'-diethyl- 1,3,5-triazine-2,4-diamine), sulfentrazone [N-[2,4-dichloro-5-[4-(difluoromethyl)-4,5-dihydro-3-methyl-5-oxo-1H- 1,2,4-triazol-1-yl]phenyl]methanesulfonamide], and tebuthiuron [N-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-N,N\'- dimethylurea]. Results obtained by our simulation study have shown that the herbicides picloram, tebuthiuron, and metribuzin have the highest leaching potential, in either sandy or clayey soils, with picloram reaching the root zone of sugarcane at 0.6m in less than 150 days.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta tese é relacionada ao estudo funcional de um gene que codifica um fator de elongação LeEF-Tsmt em tomate. Este gene participa no processo de síntese de proteína em mitocôndrias e apresenta uma forte expressão durante o processo de maturação quando comparado a outros órgãos. Nós demonstramos que o mesmo se exprime fortemente durante as primeiras fases do processo maturação em paralelo com a crise respiratória climatérica e que sua expressão é estimulada pelo etileno, ferimento e altas temperaturas. Porém, os mutantes de tomate insensíveis ao etileno, exibem uma expressão normal. Frutos transgênicos foram gerados, nos quais o LeEF-Tsmt foi aumentado ou inibido de uma forma constitutiva. Porém, a alteração da expressão do gene através da transformação genética com construções sentido e antisense do gene LeEF-Tsmt não afeta o padrão de respiração e produção de etileno durante a maturação e após o ferimento. Além disso, a expressão do gene da alternativa oxidase, que é conhecida por apresentar um papel importante no climatério respiratório, não foi afetada. Todos estes dados indicam que apesar de sua forte regulação, o LeEF-Tsmt não é limitante da atividade respiratória mitocondrial. A expressão do gene de LeEF-Tsmt é estimulada pelo efeito do estresse oxidativo induzido nas partes vegetativas da planta pela seca e o paraquat. A sensibilidade ao estresse oxidativo avaliado em folhas pela presença de necrose e em calos através de crescimento celular, foi reduzido em plantas antisentido. Entre as enzimas conhecidas por apresentar um papel na detoxificação de espécies reativas de oxigênio, superóxido dismutase (SOD), catalases (CAT), peroxidase (PX) e glutation redutase (GR), nós demostramos que a GR e PX exibem atividade mais alta em linhas antisentido, explicando assim, pelo menos em parte, sua melhor tolerância ao estresse. O papel da proteína de LeEF-Tsmt na síntese de proteínas mitocondriais foi estudado pela análise do proteôma mitocondrial em linhas antisentido e sentido do gene LeEF-Tsmt. A comparação dos proteômas de linhas transformadas e selvagem foi tratado com a ajuda de uma técnica de dupla marcagem 14N/15N aplicadas à tecidos de tomate cultivados in vitro. A linha sentido super expressa fortemente a proteína, enquanto que as linhas antisentidos diminuem ligeiramente. Uma proteína do tipo ?heat-shock? segue as variações da proteína LeEF-Tsmt, sugerindo um possível papel chaperona. Uma análise global do proteôma mitocondrial foi executada, fornecendo novas informações sobre um conjunto de ao redor 500 proteínas mitocondriais de tomate.