1000 resultados para Parametric devices
Resumo:
4-Hexylbithienopyridine has been prepared as a novel electron-accepting monomer for conjugated polymers. To test its electronic properties, alternating copolymers with fluorene and indenofluorene polymers have been prepared. The copolymers displayed reduction potentials about 0.5 V lower than for the corresponding fluorene and indenofluorene homopolymers, indicating much improved electron-accepting properties. Analysis of the microscopic morphology of thin films of the copolymers by AFM shows that they lack the extensive supramolecular order seen with the homopolymers, which is attributed to the bithienopyridine units disrupting the π-stacking. LEDs using these polymers as the emitting layer produce blue-green emission with low turn-on voltages with aluminum electrodes confirming their improved electron affinity. The indenofluorene copolymer displayed an irreversible red shift in emission at high voltages, which is attributed to oxidation of the indenofluorene units. This red shift occurred at higher potentials than for indenofluorene homopolymers in LEDs, suggesting that the heterocyclic moieties offer some protection against electrically promoted oxidation.
Resumo:
The Environmental Kuznets Curve (EKC) hypothesises an inverse U-shaped relationship between a measure of environmental pollution and per capita income levels. In this study, we apply non-parametric estimation of local polynomial regression (local quadratic fitting) to allow more flexibility in local estimation. This study uses a larger and globally representative sample of many local and global pollutants and natural resources including Biological Oxygen Demand (BOD) emission, CO2 emission, CO2 damage, energy use, energy depletion, mineral depletion, improved water source, PM10, particulate emission damage, forest area and net forest depletion. Copyright © 2009 Inderscience Enterprises Ltd.
Resumo:
Light Gauge Steel Framing (LSF) walls made of cold-formed and thin-walled steel lipped channel studs with plasterboard linings on both sides are commonly used in commercial, industrial and residential buildings. However, there is limited data about their structural and thermal performances under fire conditions. Recent research at the Queensland University of Technology has investigated the structural and thermal behaviour of load bearing LSF wall systems. In this research a series of full scale fire tests was conducted first to evaluate the performance of LSF wall systems with eight different wall configurations under standard fire conditions. Finite element models of LSF walls were then developed, analysed under transient and steady state conditions, and validated using full scale fire tests. This paper presents the details of an investigation into the fire performance of LSF wall panels based on an extensive finite element analysis based parametric study. The LSF wall panels with eight different plasterboard-insulation configurations were considered under standard fire conditions. Effects of varying steel grades, steel thicknesses, screw spacing, plasterboard restraint, insulation materials and load ratio on the fire performance of LSF walls were investigated and the results of extensive fire performance data are presented in the form of load ratio versus time and critical hot flange (failure) temperature curves.
Resumo:
Background: Human saliva mirrors the body's health and can be collected non-invasively, does not require specialized skills and is suitable for large population based screening programs. The aims were twofold: to evaluate the suitability of commercially available saliva collection devices for quantifying proteins present in saliva and to provide levels for C-reactive protein (CRP), myoglobin, and immunoglobin E (IgE) in saliva of healthy individuals as a baseline for future studies. Methods: Saliva was collected from healthy volunteers (n = 17, ages 18-33 years). The following collection methods were evaluated: drool; Salimetrics (R) Oral Swab (SOS); Salivette (R) Cotton and Synthetic (Sarstedt) and Greiner Bio-One Saliva Collection System (GBO SCS (R)). We used AlphaLISA (R) assays to measure CRP, IgE and myoglobin levels in human saliva. Results: Significant (p<0.05) differences in the salivary flow rates were observed based on the method of collection, Le. salivary flow rates were significantly lower (p<0.05) in unstimulated saliva (Le. drool and SOS), when compared with mechanically stimulated methods (p<0.05) (Salivette (R) Cotton and Synthetic) and acid stimulated method (p<0.05) (SCS (R)). Saliva collected using SOS yielded significantly (p<0.05) lower concentrations of myoglobin and CRP, whilst, saliva collected using the Salivette (R) Cotton and Synthetic swab yielded significantly (p<0.05) lower myoglobin and IgE concentrations respectively. Conclusions: The results demonstrated significantly relevant differences in analyte levels based on the collection method. Significant differences in the salivary flow rates were also observed depending on the saliva collection method. The data provide preliminary baseline values for salivary CRP, myoglobin, and IgE levels in healthy participants and based on the collection method. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This work deals with estimators for predicting when parametric roll resonance is going to occur in surface vessels. The roll angle of the vessel is modeled as a second-order linear oscillatory system with unknown parameters. Several algorithms are used to estimate the parameters and eigenvalues of the system based on data gathered experimentally on a 1:45 scale model of a tanker. Based on the estimated eigenvalues, the system predicts whether or not parametric roll occurred. A prediction accuracy of 100% is achieved for regular waves, and up to 87.5% for irregular waves.
Resumo:
The objective of this work is to formulate a nonlinear, coupled model of a container ship during parametric roll resonance, and to validate the model using experimental data.
Resumo:
Recently, attempts to improve decision making in species management have focussed on uncertainties associated with modelling temporal fluctuations in populations. Reducing model uncertainty is challenging; while larger samples improve estimation of species trajectories and reduce statistical errors, they typically amplify variability in observed trajectories. In particular, traditional modelling approaches aimed at estimating population trajectories usually do not account well for nonlinearities and uncertainties associated with multi-scale observations characteristic of large spatio-temporal surveys. We present a Bayesian semi-parametric hierarchical model for simultaneously quantifying uncertainties associated with model structure and parameters, and scale-specific variability over time. We estimate uncertainty across a four-tiered spatial hierarchy of coral cover from the Great Barrier Reef. Coral variability is well described; however, our results show that, in the absence of additional model specifications, conclusions regarding coral trajectories become highly uncertain when considering multiple reefs, suggesting that management should focus more at the scale of individual reefs. The approach presented facilitates the description and estimation of population trajectories and associated uncertainties when variability cannot be attributed to specific causes and origins. We argue that our model can unlock value contained in large-scale datasets, provide guidance for understanding sources of uncertainty, and support better informed decision making
Resumo:
Purpose The previous literature on Bland-Altman analysis only describes approximate methods for calculating confidence intervals for 95% Limits of Agreement (LoAs). This paper describes exact methods for calculating such confidence intervals, based on the assumption that differences in measurement pairs are normally distributed. Methods Two basic situations are considered for calculating LoA confidence intervals: the first where LoAs are considered individually (i.e. using one-sided tolerance factors for a normal distribution); and the second, where LoAs are considered as a pair (i.e. using two-sided tolerance factors for a normal distribution). Equations underlying the calculation of exact confidence limits are briefly outlined. Results To assist in determining confidence intervals for LoAs (considered individually and as a pair) tables of coefficients have been included for degrees of freedom between 1 and 1000. Numerical examples, showing the use of the tables for calculating confidence limits for Bland-Altman LoAs, have been provided. Conclusions Exact confidence intervals for LoAs can differ considerably from Bland and Altman’s approximate method, especially for sample sizes that are not large. There are better, more precise methods for calculating confidence intervals for LoAs than Bland and Altman’s approximate method, although even an approximate calculation of confidence intervals for LoAs is likely to be better than none at all. Reporting confidence limits for LoAs considered as a pair is appropriate for most situations, however there may be circumstances where it is appropriate to report confidence limits for LoAs considered individually.
Resumo:
Nowadays, integration of small-scale electricity generators, known as Distributed Generation (DG), into distribution networks has become increasingly popular. This tendency together with the falling price of DG units has a great potential in giving the DG a better chance to participate in voltage regulation process, in parallel with other regulating devices already available in the distribution systems. The voltage control issue turns out to be a very challenging problem for distribution engineers, since existing control coordination schemes need to be reconsidered to take into account the DG operation. In this paper, a control coordination approach is proposed, which is able to utilize the ability of the DG as a voltage regulator, and at the same time minimize the interaction of DG with another DG or other active devices, such as On-load Tap Changing Transformer (OLTC). The proposed technique has been developed based on the concepts of protection principles (magnitude grading and time grading) for response coordination of DG and other regulating devices and uses Advanced Line Drop Compensators (ALDCs) for implementation. A distribution feeder with tap changing transformer and DG units has been extracted from a practical system to test the proposed control technique. The results show that the proposed method provides an effective solution for coordination of DG with another DG or voltage regulating devices and the integration of protection principles has considerably reduced the control interaction to achieve the desired voltage correction.
Resumo:
Electric distribution networks are now in the era of transition from passive to active distribution networks with the integration of energy storage devices. Optimal usage of batteries and voltage control devices along with other upgrades in network needs a distribution expansion planning (DEP) considering inter-temporal dependencies of stages. This paper presents an efficient approach for solving multi-stage distribution expansion planning problems (MSDEPP) based on a forward-backward approach considering energy storage devices such as batteries and voltage control devices such as voltage regulators and capacitors. The proposed algorithm is compared with three other techniques including full dynamic, forward fill-in, backward pull-out from the point of view of their precision and their computational efficiency. The simulation results for the IEEE 13 bus network show the proposed pseudo-dynamic forward-backward approach presents good efficiency in precision and time of optimization.
Resumo:
AIM The aim of this evidence-based practice (EBP) project was to promote adherence to the current best practice in monitoring and optimal replacement of peripheral intravenous device (PIVD). METHODS This EBP project took place in a 30-bed acute general surgical ward. Twenty in-patients with PIVD in situ for 4 days or more were recruited. There were five stages in the project: identification of EBP topic, criteria, sample and setting; baseline; dissemination of baseline audit results and identification of best practice barriers; identification of barriers to EBP and implementation of strategies promoting EBP; and postimplementation audit. RESULTS There were eight criteria in this project. The first audit showed moderate compliance in PIVD monitoring and optimal replacement. The project identified three barriers: lack of awareness of the current evidence-based guidelines, hospital policy not being aligned with current guidelines and no standard form of documentation. In order to overcome these barriers the following strategies were used: audit and feedback, interactive educational meetings, reminders and hospital policy change. The second audit showed minor improvements in each criterion. Compliance with documentation remained a challenge, possibly because of the lack of standardised documentation. DISCUSSION Although the project did not render us the results we aimed for, it was successful because it highlighted the current EBP in PIVD management. The major challenges of the project were time and the lack of opinion leaders in our project team. We felt that more time was needed to adapt to the practice change and standardised documentation could not be developed in such a short time period. Further, the role of the opinion leader proved to be vital in this project. We felt that had we recruited more than one opinion leader, the results would have been different.