947 resultados para Parametric VaR (Value-at-Risk)
Resumo:
The purpose of this study is to examine how well risk parity works in terms of risk, return and diversification relative to more traditional minimum variance, 1/N and 60/40 portfolios. Risk parity portfolios were constituted of five risk sources; three common asset classes and two alternative beta investment strategies. The three common asset classes were equities, bonds and commodities, and the alternative beta investment strategies were carry trade and trend following. Risk parity portfolios were constructed using five different risk measures of which four were tail risk measures. The risk measures were standard deviation, Value-at-Risk, Expected Shortfall, modified Value-at-Risk and modified Expected Shortfall. We studied also how sensitive risk parity is to the choice of risk measure. The hypothesis is that risk parity portfolios provide better return with the same amount of risk and are better diversified than the benchmark portfolios. We used two data sets, monthly and weekly data. The monthly data was from the years 1989-2011 and the weekly data was from the years 2000-2011. Empirical studies showed that risk parity portfolios provide better diversification since the diversification is made at the risk level. Risk based portfolios provided superior return compared to the asset based portfolios. Using tail risk measures in risk parity portfolios do not necessarily provide better hedge from tail events than standard deviation.
Resumo:
Stochastic approximation methods for stochastic optimization are considered. Reviewed the main methods of stochastic approximation: stochastic quasi-gradient algorithm, Kiefer-Wolfowitz algorithm and adaptive rules for them, simultaneous perturbation stochastic approximation (SPSA) algorithm. Suggested the model and the solution of the retailer's profit optimization problem and considered an application of the SQG-algorithm for the optimization problems with objective functions given in the form of ordinary differential equation.
Resumo:
An exchange traded fund (ETF) is a financial instrument that tracks some predetermined index. Since their initial establishment in 1993, ETFs have grown in importance in the field of passive investing. The main reason for the growth of the ETF industry is that ETFs combine benefits of stock investing and mutual fund investing. Although ETFs resemble mutual funds in many ways, also many differences occur. In addition, ETFs not only differ from mutual funds but also differ among each other. ETFs can be divided into two categories, i.e. market capitalisation ETFs and fundamental (or strategic) ETFs, and further into subcategories depending on their fundament basis. ETFs are a useful tool for diversification especially for a long-term investor. Although the economic importance of ETFs has risen drastically during the past 25 years, the differences and risk-return characteristics of fundamental ETFs have yet been rather unstudied area. In effect, no previous research on market capitalisation and fundamental ETFs was found during the research process. For its part, this thesis seeks to fill this research gap. The studied data consist of 50 market capitalisation ETFs and 50 fundamental ETFs. The fundaments, on which the indices that the fundamental ETFs track, were not limited nor segregated into subsections. The two types of ETFs were studied at an aggregate level as two different research groups. The dataset ranges from June 2006 to December 2014 with 103 monthly observations. The data was gathered using Bloomberg Terminal. The analysis was conducted as an econometric performance analysis. In addition to other econometric measures, the methods that were used in the performance analysis included modified Value-at-Risk, modified Sharpe ratio and Treynor ratio. The results supported the hypothesis that passive market capitalisation ETFs outperform active fundamental ETFs in terms of risk-adjusted returns, though the difference is rather small. Nevertheless, when taking into account the higher overall trading costs of the fundamental ETFs, the underperformance gap widens. According to the research results, market capitalisation ETFs are a recommendable diversification instrument for a long-term investor. In addition to better risk-adjusted returns, passive ETFs are more transparent and the bases of their underlying indices are simpler than those of fundamental ETFs. ETFs are still a young financial innovation and hence data is scarcely available. On future research, it would be valuable to research the differences in risk-adjusted returns also between the subsections of fundamental ETFs.
Resumo:
For my Licentiate thesis, I conducted research on risk measures. Continuing with this research, I now focus on capital allocation. In the proportional capital allocation principle, the choice of risk measure plays a very important part. In the chapters Introduction and Basic concepts, we introduce three definitions of economic capital, discuss the purpose of capital allocation, give different viewpoints of capital allocation and present an overview of relevant literature. Risk measures are defined and the concept of coherent risk measure is introduced. Examples of important risk measures are given, e. g., Value at Risk (VaR), Tail Value at Risk (TVaR). We also discuss the implications of dependence and review some important distributions. In the following chapter on Capital allocation we introduce different principles for allocating capital. We prefer to work with the proportional allocation method. In the following chapter, Capital allocation based on tails, we focus on insurance business lines with heavy-tailed loss distribution. To emphasize capital allocation based on tails, we define the following risk measures: Conditional Expectation, Upper Tail Covariance and Tail Covariance Premium Adjusted (TCPA). In the final chapter, called Illustrative case study, we simulate two sets of data with five insurance business lines using Normal copulas and Cauchy copulas. The proportional capital allocation is calculated using TCPA as risk measure. It is compared with the result when VaR is used as risk measure and with covariance capital allocation. In this thesis, it is emphasized that no single allocation principle is perfect for all purposes. When focusing on the tail of losses, the allocation based on TCPA is a good one, since TCPA in a sense includes features of TVaR and Tail covariance.
Resumo:
Statistical tests in vector autoregressive (VAR) models are typically based on large-sample approximations, involving the use of asymptotic distributions or bootstrap techniques. After documenting that such methods can be very misleading even with fairly large samples, especially when the number of lags or the number of equations is not small, we propose a general simulation-based technique that allows one to control completely the level of tests in parametric VAR models. In particular, we show that maximized Monte Carlo tests [Dufour (2002)] can provide provably exact tests for such models, whether they are stationary or integrated. Applications to order selection and causality testing are considered as special cases. The technique developed is applied to quarterly and monthly VAR models of the U.S. economy, comprising income, money, interest rates and prices, over the period 1965-1996.
Resumo:
Cette thèse de doctorat consiste en trois chapitres qui traitent des sujets de choix de portefeuilles de grande taille, et de mesure de risque. Le premier chapitre traite du problème d’erreur d’estimation dans les portefeuilles de grande taille, et utilise le cadre d'analyse moyenne-variance. Le second chapitre explore l'importance du risque de devise pour les portefeuilles d'actifs domestiques, et étudie les liens entre la stabilité des poids de portefeuille de grande taille et le risque de devise. Pour finir, sous l'hypothèse que le preneur de décision est pessimiste, le troisième chapitre dérive la prime de risque, une mesure du pessimisme, et propose une méthodologie pour estimer les mesures dérivées. Le premier chapitre améliore le choix optimal de portefeuille dans le cadre du principe moyenne-variance de Markowitz (1952). Ceci est motivé par les résultats très décevants obtenus, lorsque la moyenne et la variance sont remplacées par leurs estimations empiriques. Ce problème est amplifié lorsque le nombre d’actifs est grand et que la matrice de covariance empirique est singulière ou presque singulière. Dans ce chapitre, nous examinons quatre techniques de régularisation pour stabiliser l’inverse de la matrice de covariance: le ridge, spectral cut-off, Landweber-Fridman et LARS Lasso. Ces méthodes font chacune intervenir un paramètre d’ajustement, qui doit être sélectionné. La contribution principale de cette partie, est de dériver une méthode basée uniquement sur les données pour sélectionner le paramètre de régularisation de manière optimale, i.e. pour minimiser la perte espérée d’utilité. Précisément, un critère de validation croisée qui prend une même forme pour les quatre méthodes de régularisation est dérivé. Les règles régularisées obtenues sont alors comparées à la règle utilisant directement les données et à la stratégie naïve 1/N, selon leur perte espérée d’utilité et leur ratio de Sharpe. Ces performances sont mesurée dans l’échantillon (in-sample) et hors-échantillon (out-of-sample) en considérant différentes tailles d’échantillon et nombre d’actifs. Des simulations et de l’illustration empirique menées, il ressort principalement que la régularisation de la matrice de covariance améliore de manière significative la règle de Markowitz basée sur les données, et donne de meilleurs résultats que le portefeuille naïf, surtout dans les cas le problème d’erreur d’estimation est très sévère. Dans le second chapitre, nous investiguons dans quelle mesure, les portefeuilles optimaux et stables d'actifs domestiques, peuvent réduire ou éliminer le risque de devise. Pour cela nous utilisons des rendements mensuelles de 48 industries américaines, au cours de la période 1976-2008. Pour résoudre les problèmes d'instabilité inhérents aux portefeuilles de grandes tailles, nous adoptons la méthode de régularisation spectral cut-off. Ceci aboutit à une famille de portefeuilles optimaux et stables, en permettant aux investisseurs de choisir différents pourcentages des composantes principales (ou dégrées de stabilité). Nos tests empiriques sont basés sur un modèle International d'évaluation d'actifs financiers (IAPM). Dans ce modèle, le risque de devise est décomposé en deux facteurs représentant les devises des pays industrialisés d'une part, et celles des pays émergents d'autres part. Nos résultats indiquent que le risque de devise est primé et varie à travers le temps pour les portefeuilles stables de risque minimum. De plus ces stratégies conduisent à une réduction significative de l'exposition au risque de change, tandis que la contribution de la prime risque de change reste en moyenne inchangée. Les poids de portefeuille optimaux sont une alternative aux poids de capitalisation boursière. Par conséquent ce chapitre complète la littérature selon laquelle la prime de risque est importante au niveau de l'industrie et au niveau national dans la plupart des pays. Dans le dernier chapitre, nous dérivons une mesure de la prime de risque pour des préférences dépendent du rang et proposons une mesure du degré de pessimisme, étant donné une fonction de distorsion. Les mesures introduites généralisent la mesure de prime de risque dérivée dans le cadre de la théorie de l'utilité espérée, qui est fréquemment violée aussi bien dans des situations expérimentales que dans des situations réelles. Dans la grande famille des préférences considérées, une attention particulière est accordée à la CVaR (valeur à risque conditionnelle). Cette dernière mesure de risque est de plus en plus utilisée pour la construction de portefeuilles et est préconisée pour compléter la VaR (valeur à risque) utilisée depuis 1996 par le comité de Bâle. De plus, nous fournissons le cadre statistique nécessaire pour faire de l’inférence sur les mesures proposées. Pour finir, les propriétés des estimateurs proposés sont évaluées à travers une étude Monte-Carlo, et une illustration empirique en utilisant les rendements journaliers du marché boursier américain sur de la période 2000-2011.
Resumo:
Dans cette thèse, nous étudions quelques problèmes fondamentaux en mathématiques financières et actuarielles, ainsi que leurs applications. Cette thèse est constituée de trois contributions portant principalement sur la théorie de la mesure de risques, le problème de l’allocation du capital et la théorie des fluctuations. Dans le chapitre 2, nous construisons de nouvelles mesures de risque cohérentes et étudions l’allocation de capital dans le cadre de la théorie des risques collectifs. Pour ce faire, nous introduisons la famille des "mesures de risque entropique cumulatifs" (Cumulative Entropic Risk Measures). Le chapitre 3 étudie le problème du portefeuille optimal pour le Entropic Value at Risk dans le cas où les rendements sont modélisés par un processus de diffusion à sauts (Jump-Diffusion). Dans le chapitre 4, nous généralisons la notion de "statistiques naturelles de risque" (natural risk statistics) au cadre multivarié. Cette extension non-triviale produit des mesures de risque multivariées construites à partir des données financiéres et de données d’assurance. Le chapitre 5 introduit les concepts de "drawdown" et de la "vitesse d’épuisement" (speed of depletion) dans la théorie de la ruine. Nous étudions ces concepts pour des modeles de risque décrits par une famille de processus de Lévy spectrallement négatifs.
Resumo:
El presente trabajo de grado busca definir cuál es el mejor método para determinar el valor en riesgo del contrato de futuro de energía eléctrica que se transa en Colombia, para cumplir con este objetivo se toma como referencia el marco histórico del VaR y de los futuros seguido de las características de la fijación de precios, la estructura del contrato, que políticas y métodos hay para cubrirse del riesgo y como se realiza en otros países, realizando algunos cálculos de los modelos más tradicionales del Var para luego incorporarlo al marco colombiano y al ente supervisor en este caso la Superintendencia Financiera de Colombia.. Además de revisar las diferentes teorías de internacionalización económicas, de proceso y redes aplicadas al sector energético en Colombia., evaluando su proceso, alcance y posibles mercados futuros.
Resumo:
This paper analyzes the measure of systemic importance ∆CoV aR proposed by Adrian and Brunnermeier (2009, 2010) within the context of a similar class of risk measures used in the risk management literature. In addition, we develop a series of testing procedures, based on ∆CoV aR, to identify and rank the systemically important institutions. We stress the importance of statistical testing in interpreting the measure of systemic importance. An empirical application illustrates the testing procedures, using equity data for three European banks.
Resumo:
This paper introduces a method for simulating multivariate samples that have exact means, covariances, skewness and kurtosis. We introduce a new class of rectangular orthogonal matrix which is fundamental to the methodology and we call these matrices L matrices. They may be deterministic, parametric or data specific in nature. The target moments determine the L matrix then infinitely many random samples with the same exact moments may be generated by multiplying the L matrix by arbitrary random orthogonal matrices. This methodology is thus termed “ROM simulation”. Considering certain elementary types of random orthogonal matrices we demonstrate that they generate samples with different characteristics. ROM simulation has applications to many problems that are resolved using standard Monte Carlo methods. But no parametric assumptions are required (unless parametric L matrices are used) so there is no sampling error caused by the discrete approximation of a continuous distribution, which is a major source of error in standard Monte Carlo simulations. For illustration, we apply ROM simulation to determine the value-at-risk of a stock portfolio.
Resumo:
Internal risk management models of the kind popularized by J. P. Morgan are now used widely by the world’s most sophisticated financial institutions as a means of measuring risk. Using the returns on three of the most popular futures contracts on the London International Financial Futures Exchange, in this paper we investigate the possibility of using multivariate generalized autoregressive conditional heteroscedasticity (GARCH) models for the calculation of minimum capital risk requirements (MCRRs). We propose a method for the estimation of the value at risk of a portfolio based on a multivariate GARCH model. We find that the consideration of the correlation between the contracts can lead to more accurate, and therefore more appropriate, MCRRs compared with the values obtained from a univariate approach to the problem.
Resumo:
In this paper, we study jumps in commodity prices. Unlike assumed in existing models of commodity price dynamics, a simple analysis of the data reveals that the probability of tail events is not constant but depends on the time of the year, i.e. exhibits seasonality. We propose a stochastic volatility jump–diffusion model to capture this seasonal variation. Applying the Markov Chain Monte Carlo (MCMC) methodology, we estimate our model using 20 years of futures data from four different commodity markets. We find strong statistical evidence to suggest that our model with seasonal jump intensity outperforms models featuring a constant jump intensity. To demonstrate the practical relevance of our findings, we show that our model typically improves Value-at-Risk (VaR) forecasts.
Resumo:
This Thesis is the result of my Master Degree studies at the Graduate School of Economics, Getúlio Vargas Foundation, from January 2004 to August 2006. am indebted to my Thesis Advisor, Professor Luiz Renato Lima, who introduced me to the Econometrics' world. In this Thesis, we study time-varying quantile process and we develop two applications, which are presented here as Part and Part II. Each of these parts was transformed in paper. Both papers were submitted. Part shows that asymmetric persistence induces ARCH effects, but the LMARCH test has power against it. On the other hand, the test for asymmetric dynamics proposed by Koenker and Xiao (2004) has correct size under the presence of ARCH errors. These results suggest that the LM-ARCH and the Koenker-Xiao tests may be used in applied research as complementary tools. In the Part II, we compare four different Value-at-Risk (VaR) methodologies through Monte Cario experiments. Our results indicate that the method based on quantile regression with ARCH effect dominates other methods that require distributional assumption. In particular, we show that the non-robust method ologies have higher probability to predict VaRs with too many violations. We illustrate our findings with an empirical exercise in which we estimate VaR for returns of São Paulo stock exchange index, IBOVESPA, during periods of market turmoil. Our results indicate that the robust method based on quantile regression presents the least number of violations.
Resumo:
Nos últimos tempos, mensurar o Risco Operacional (RO) tornou-se o grande desafio para instituições financeiras no mundo todo, principalmente com a implementação das regras de alocação de capital regulatório do Novo Acordo de Capital da Basiléia (NACB). No Brasil, ao final de 2004, o Banco Central (BACEN) estabeleceu um cronograma de metas e disponibilizou uma equipe responsável pela adaptação e implementação dessas regras no sistema financeiro nacional. A Federação de Bancos Brasileiros (FEBRABAN) também divulgou recente pesquisa de gestão de RO envolvendo vários bancos. Todo esse processo trouxe uma vasta e crescente pesquisa e atividades voltadas para a modelagem de RO no Brasil. Em nosso trabalho, medimos o impacto geral nos banco brasileiros, motivado pelas novas regras de alocação de capital de RO envolvendo os modelos mais básicos do NACB. Também introduzimos um modelo avançado de mensuração de risco, chamado Loss Data Distribution (LDA), que alguns especialistas, provenientes do Risco de Mercado, convencionaram chamar de Value-at-Risk Operacional (VaR Operacional.). Ao final desse trabalho apresentamos um caso prático baseado na implementação do LDA ou VaR
Resumo:
This thesis is composed of three essays referent to the subjects of macroeconometrics and Önance. In each essay, which corresponds to one chapter, the objective is to investigate and analyze advanced econometric techniques, applied to relevant macroeconomic questions, such as the capital mobility hypothesis and the sustainability of public debt. A Önance topic regarding portfolio risk management is also investigated, through an econometric technique used to evaluate Value-at-Risk models. The Örst chapter investigates an intertemporal optimization model to analyze the current account. Based on Campbell & Shillerís (1987) approach, a Wald test is conducted to analyze a set of restrictions imposed to a VAR used to forecast the current account. The estimation is based on three di§erent procedures: OLS, SUR and the two-way error decomposition of Fuller & Battese (1974), due to the presence of global shocks. A note on Granger causality is also provided, which is shown to be a necessary condition to perform the Wald test with serious implications to the validation of the model. An empirical exercise for the G-7 countries is presented, and the results substantially change with the di§erent estimation techniques. A small Monte Carlo simulation is also presented to investigate the size and power of the Wald test based on the considered estimators. The second chapter presents a study about Öscal sustainability based on a quantile autoregression (QAR) model. A novel methodology to separate periods of nonstationarity from stationary ones is proposed, which allows one to identify trajectories of public debt that are not compatible with Öscal sustainability. Moreover, such trajectories are used to construct a debt ceiling, that is, the largest value of public debt that does not jeopardize long-run Öscal sustainability. An out-of-sample forecast of such a ceiling is also constructed, and can be used by policy makers interested in keeping the public debt on a sustainable path. An empirical exercise by using Brazilian data is conducted to show the applicability of the methodology. In the third chapter, an alternative backtest to evaluate the performance of Value-at-Risk (VaR) models is proposed. The econometric methodology allows one to directly test the overall performance of a VaR model, as well as identify periods of an increased risk exposure, which seems to be a novelty in the literature. Quantile regressions provide an appropriate environment to investigate VaR models, since they can naturally be viewed as a conditional quantile function of a given return series. An empirical exercise is conducted for daily S&P500 series, and a Monte Carlo simulation is also presented, revealing that the proposed test might exhibit more power in comparison to other backtests.