365 resultados para Palaeoclimate
Resumo:
Neogene basins are widespread in Turkey and contain important lignite deposits. In this study, we reconstruct quantitatively the Late Oligocene-Miocene climate evolution in western and central Anatolia by applying the Coexistence Approach to the palynoflora. The obtained results are compared with the data derived from the published and ongoing studies in western and central Anatolia palynofloras by application of the Coexistence Approach. The Coexistence Approach results show that the sedimentation mainly developed on terrestrial environment under the warm subtropical climatic conditions and marine influence during the Chattian and Aquitanian period in western Anatolia (16.5-21.3°C of mean annual temperature (MAT) and 5.5-13.3°C of mean temperature of coldest month (CMT)). After the regression of the sea during the Burdigalian period, the vegetation developed under the terrestrial conditions, which had started in the Burdigalian time in western and central Anatolia and continued in the early-middle Serravallian period. Warm subtropical climate is suggested during the Chattian and Aquitanian period in western Anatolia and becomes cooler in subtropical conditions because of decreasing of the P/A-ratio during the latest Burdigalian-Langhian. The climate was subtropical in western and central Anatolia during the Early-Late Serravalian due to the increasing of the subtropical elements (17.2 to 20.8°C of MAT and 9.6 to13.1°C of CMT). Besides, decreasing of the CMT and MAT values in western and central Anatolia supports the latest Chattian-earliest Aquitanian warming and middle Miocene climatic optimum that is also globally observed. Warm temperate climatic conditions are observed in the Late Miocene. During the early-middle Tortonian, the values are 15.6 to 20.8°C for the MAT, 5.5 to 13.3°C for the CMT and 823 and 1520 mm for the mean annual precipitation (MAP). They had also dry seasons due to lower boundary of MAP lying at 823mm during the middle-Late Tortonian. The palaeotopography of central Anatolia was higher when compared to that of western Anatolia because dominance of the mountain forests was present during the Middle-Late Miocene in central Anatolia. This study provides the first quantitative model for Late Oligocene-Miocene palaeoclimatic evolution in western and central Anatolia.