996 resultados para Palaeo-tethys


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benthic foraminiferal distribution patterns throughout the late Maastrichtian Tethyan deep sea are analyzed. Many species are ubiquitously distributed throughout this region and therefore it is hard to assess their ecological preferences. However, five species show distribution patterns, which suggest that they may have distinctive paleoenvironmental preferences. These preferences are interpreted from hypothesized surface circulation and upwelling patterns. Additional information comes from Recent benthic foraminiferal ecology and from responses to the Cretaceous/Paleogene (k/Pg) boundary event. This enables us to assess the ecological preferences of these late Maastrichtian taxa, and establish them as ecological-marker (ecomarker) species for paleoenvironmental interpretation of the late Maastrichtian bathyal-abyssal Tethyan realm. (1) Eouvigerina subsculpturu is suggested to be indicative of reasonably oxygenated upper-middle bathyal environments, though with high abundance of utilizable organic matter. (2) Sliteria varsoviensis is linked to areas of late Maastrichtian upwelling and seems to have been an epibenthic species with an opportunistic life mode. (3) Guvelinellu beccuriiformis and (4) Nuttullides truempyi are considered to be indicative of oligotrophic conditions unless they occur with a large proportion of endobenthic morphotypes. (5) Guvelinellu pertusu is proposed to indicate neritic-middle bathyal environments of the 'boreal' realm, which might be influenced by more seasonal food-fluxes and by higher oxygen levels than similar settings in the (sub)tropics. Finally, the anomalous high abundances of the buliminid species Sitella cf. plunu in deep open ocean environments is discussed in terms of possible mechanisms permitting such a (morphologically) opportunistic species to thrive in such an assumedly oligotrophic environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cutri Formation’s, type location, exposed in the NW of Mallorca, Spain has previously been described by Álvaro et al., (1989) and further interpreted by Abbots (1989) unpublished PhD thesis as a base-of-slope carbonate apron. Incorporating new field and laboratory analysis this paper enhances this interpretation. From this analysis, it can be shown without reasonable doubt that the Cutri Formation was deposited in a carbonate base-of-slope environment on the palaeowindward side of a Mid-Jurassic Tethyan platform. Key evidence such as laterally extensive exposures, abundant deposits of calciturbidtes and debris flows amongst hemipelagic deposits strongly support this interpretation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several vertebrae of a sauropterygian specimen have been recovered in Fuencaliente de Medinaceli (Soria Province, Castilla y León, Spain). The remains come from Middle–Upper Triassic Muschelkalk Facies. This finding represents the first documented evidence of a Triassic tetrapod in Castilla y León. The vertebrae belong to Nothosaurus, a sauropterygian genus found in Europe, Middle East, North of Africa and China. This genus is poorly-known in the Iberian record. The new remains constitute the first evidence of the species Nothosaurus giganteus, or a related taxon, in the Iberian Peninsula. This study reveals the occurrence of at least two species of the sauropterygian Nothosaurus in the Spanish record.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcitic belemnite rostra are usually employed to perform paleoenvironmental studies based on geochemical data. However, several questions, such as their original porosity and microstructure, remain open, despite they are essential to make accurate interpretations based on geochemical analyses.This paper revisits and enlightens some of these questions. Petrographic data demonstrate that calcite crystals of the rostrum solidum of belemnites grow from spherulites that successively develop along the apical line, resulting in a “regular spherulithic prismatic” microstructure. Radially arranged calcite crystals emerge and diverge from the spherulites: towards the apex, crystals grow until a new spherulite is formed; towards the external walls of the rostrum, the crystals become progressively bigger and prismatic. Adjacent crystals slightly vary in their c-axis orientation, resulting in undulose extinction. Concentric growth layering develops at different scales and is superimposed and traversed by a radial pattern, which results in the micro-fibrous texture that is observed in the calcite crystals in the rostra.Petrographic data demonstrate that single calcite crystals in the rostra have a composite nature, which strongly suggests that the belemnite rostra were originally porous. Single crystals consistently comprise two distinct zones or sectors in optical continuity: 1) the inner zone is fluorescent, has relatively low optical relief under transmitted light (TL) microscopy, a dark-grey color under backscatter electron microscopy (BSEM), a commonly triangular shape, a “patchy” appearance and relatively high Mg and Na contents; 2) the outer sector is non-fluorescent, has relatively high optical relief under TL, a light-grey color under BSEM and low Mg and Na contents. The inner and fluorescent sectors are interpreted to have formed first as a product of biologically controlled mineralization during belemnite skeletal growth and the non-fluorescent outer sectors as overgrowths of the former, filling the intra- and inter-crystalline porosity. This question has important implications for making paleoenvironmental and/or paleoclimatic interpretations based on geochemical analyses of belemnite rostra.Finally, the petrographic features of composite calcite crystals in the rostra also suggest the non-classical crystallization of belemnite rostra, as previously suggested by other authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the Lluta Valley, northern Chile, climate is hyperarid and vegetation is restricted to the valley floors and lowermost footslopes. Fossil tree trunks and leaves of predominantly Escallonia angustifolia, however, are abundant up to ∼15 m above the present valley floor, where they are intercalated with slope deposits, reflecting higher water levels in the past. A total of 17 samples have been radiocarbon dated, yielding ages between 38 and 15k cal a BP. The youngest ages of 15.4k cal a BP are interpreted as reflecting the beginning of river incision and lowering of the valley floor, impeding the further growth of trees at higher parts of the slopes. The most plausible scenario for this observation is intensified river incision after 15.4k cal a BP due to increased stream power and runoff from the Río Lluta headwaters in the Western Cordillera and Altiplano corresponding to the highstand of the Tauca and Central Andean Pluvial Event (CAPE) wet phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Mount Isa Basin is a new concept used to describe the area of Palaeo- to Mesoproterozoic rocks south of the Murphy Inlier and inappropriately described presently as the Mount Isa Inlier. The new basin concept presented in this thesis allows for the characterisation of basin-wide structural deformation, correlation of mineralisation with particular lithostratigraphic and seismic stratigraphic packages, and the recognition of areas with petroleum exploration potential. The northern depositional margin of the Mount Isa Basin is the metamorphic, intrusive and volcanic complex here referred to as the Murphy Inlier (not the "Murphy Tectonic Ridge"). The eastern, southern and western boundaries of the basin are obscured by younger basins (Carpentaria, Eromanga and Georgina Basins). The Murphy Inlier rocks comprise the seismic basement to the Mount Isa Basin sequence. Evidence for the continuity of the Mount Isa Basin with the McArthur Basin to the northwest and the Willyama Block (Basin) at Broken Hill to the south is presented. These areas combined with several other areas of similar age are believed to have comprised the Carpentarian Superbasin (new term). The application of seismic exploration within Authority to Prospect (ATP) 423P at the northern margin of the basin was critical to the recognition and definition of the Mount Isa Basin. The Mount Isa Basin is structurally analogous to the Palaeozoic Arkoma Basin of Illinois and Arkansas in southern USA but, as with all basins it contains unique characteristics, a function of its individual development history. The Mount Isa Basin evolved in a manner similar to many well described, Phanerozoic plate tectonic driven basins. A full Wilson Cycle is recognised and a plate tectonic model proposed. The northern Mount Isa Basin is defined as the Proterozoic basin area northwest of the Mount Gordon Fault. Deposition in the northern Mount Isa Basin began with a rift sequence of volcaniclastic sediments followed by a passive margin drift phase comprising mostly carbonate rocks. Following the rift and drift phases, major north-south compression produced east-west thrusting in the south of the basin inverting the older sequences. This compression produced an asymmetric epi- or intra-cratonic clastic dominated peripheral foreland basin provenanced in the south and thinning markedly to a stable platform area (the Murphy Inlier) in the north. The fmal major deformation comprised east-west compression producing north-south aligned faults that are particularly prominent at Mount Isa. Potential field studies of the northern Mount Isa Basin, principally using magnetic data (and to a lesser extent gravity data, satellite images and aerial photographs) exhibit remarkable correlation with the reflection seismic data. The potential field data contributed significantly to the unravelling of the northern Mount Isa Basin architecture and deformation. Structurally, the Mount Isa Basin consists of three distinct regions. From the north to the south they are the Bowthorn Block, the Riversleigh Fold Zone and the Cloncurry Orogen (new names). The Bowthom Block, which is located between the Elizabeth Creek Thrust Zone and the Murphy Inlier, consists of an asymmetric wedge of volcanic, carbonate and clastic rocks. It ranges from over 10 000 m stratigraphic thickness in the south to less than 2000 min the north. The Bowthorn Block is relatively undeformed: however, it contains a series of reverse faults trending east-west that are interpreted from seismic data to be down-to-the-north normal faults that have been reactivated as thrusts. The Riversleigh Fold Zone is a folded and faulted region south of the Bowthorn Block, comprising much of the area formerly referred to as the Lawn Hill Platform. The Cloncurry Orogen consists of the area and sequences equivalent to the former Mount Isa Orogen. The name Cloncurry Orogen clearly distinguishes this area from the wider concept of the Mount Isa Basin. The South Nicholson Group and its probable correlatives, the Pilpah Sandstone and Quamby Conglomerate, comprise a later phase of now largely eroded deposits within the Mount Isa Basin. The name South Nicholson Basin is now outmoded as this terminology only applied to the South Nicholson Group unlike the original broader definition in Brown et al. (1968). Cored slimhole stratigraphic and mineral wells drilled by Amoco, Esso, Elf Aquitaine and Carpentaria Exploration prior to 1986, penetrated much of the stratigraphy and intersected both minor oil and gas shows plus excellent potential source rocks. The raw data were reinterpreted and augmented with seismic stratigraphy and source rock data from resampled mineral and petroleum stratigraphic exploration wells for this study. Since 1986, Comalco Aluminium Limited, as operator of a joint venture with Monument Resources Australia Limited and Bridge Oil Limited, recorded approximately 1000 km of reflection seismic data within the basin and drilled one conventional stratigraphic petroleum well, Beamesbrook-1. This work was the first reflection seismic and first conventional petroleum test of the northern Mount Isa Basin. When incorporated into the newly developed foreland basin and maturity models, a grass roots petroleum exploration play was recognised and this led to the present thesis. The Mount Isa Basin was seen to contain excellent source rocks coupled with potential reservoirs and all of the other essential aspects of a conventional petroleum exploration play. This play, although high risk, was commensurate with the enormous and totally untested petroleum potential of the basin. The basin was assessed for hydrocarbons in 1992 with three conventional exploration wells, Desert Creek-1, Argyle Creek-1 and Egilabria-1. These wells also tested and confrrmed the proposed basin model. No commercially viable oil or gas was encountered although evidence of its former existence was found. In addition to the petroleum exploration, indeed as a consequence of it, the association of the extensive base metal and other mineralisation in the Mount Isa Basin with hydrocarbons could not be overlooked. A comprehensive analysis of the available data suggests a link between the migration and possible generation or destruction of hydrocarbons and metal bearing fluids. Consequently, base metal exploration based on hydrocarbon exploration concepts is probably. the most effective technique in such basins. The metal-hydrocarbon-sedimentary basin-plate tectonic association (analogous to Phanerozoic models) is a compelling outcome of this work on the Palaeo- to Mesoproterozoic Mount lsa Basin. Petroleum within the Bowthom Block was apparently destroyed by hot brines that produced many ore deposits elsewhere in the basin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Sascha-Pelligrini low-sulphidation epithermal system is located on the western edge of the Deseado Massif, Santa Cruz Province, Argentina. Outcrop sampling has returned values of up to 160g/t gold and 796g/t silver, with Mirasol Resources and Coeur D.Alene Mines currently exploring the property. Detailed mapping of the volcanic stratigraphy has defined three units that comprise the middle Jurassic Chon Aike Formation and two units that comprise the upper Jurassic La Matilde Formation. The Chon Aike Formation consists of rhyodacite ignimbrites and tuffs, with the La Matilde Formation including rhyolite ash and lithic tuffs. The volcanic sequence is intruded by a large flow-banded rhyolite dome, with small, spatially restricted granodiorite dykes and sills cropping out across the study area. ASTER multispectral mineral mapping, combined with PIMA (Portable Infrared Mineral Analyser) and XRD (X-ray diffraction) analysis defines an alteration pattern that zones from laumontite-montmorillonite, to illite-pyritechlorite, followed by a quartz-illite-smectite-pyrite-adularia vein selvage. Supergene kaolinite and steam-heated acid-sulphate kaolinite-alunite-opal alteration horizons crop out along the Sascha Vein trend and Pelligrini respectively. Paragenetically, epithermal veining varies from chalcedonic to saccharoidal with minor bladed textures, colloform/crustiform-banded with visible electrum and acanthite, crustiform-banded grey chalcedonic to jasperoidal with fine pyrite, and crystalline comb quartz. Geothermometry of mineralised veins constrains formation temperatures from 174.8 to 205.1¡ÆC and correlates with the stability field for the interstratified illite-smectite vein selvage. Vein morphology, mineralogy and associated alteration are controlled by host rock rheology, permeability, and depth of the palaeo-water table. Mineralisation within ginguro banded veins resulted from fluctuating fluid pH associated with selenide-rich magmatic pulses, pressure release boiling and wall-rock silicate buffering. The study of the Sascha-Pelligrini epithermal system will form the basis for a deposit-specific model helping to clarify the current understanding of epithermal deposits, and may serve as a template for exploration of similar epithermal deposits throughout Santa Cruz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been known since Rhodes Fairbridge’s first attempt to establish a global pattern of Holocene sea-level change by combining evidence from Western Australia and from sites in the northern hemisphere that the details of sea-level history since the Last Glacial Maximum vary considerably across the globe. The Australian region is relatively stable tectonically and is situated in the ‘far-field’ of former ice sheets. It therefore preserves important records of post-glacial sea levels that are less complicated by neotectonics or glacio-isostatic adjustments. Accordingly, the relative sea-level record of this region is dominantly one of glacio-eustatic (ice equivalent) sea-level changes. The broader Australasian region has provided critical information on the nature of post-glacial sea level, including the termination of the Last Glacial Maximum when sea level was approximately 125 m lower than present around 21,000–19,000 years BP, and insights into meltwater pulse 1A between 14,600 and 14,300 cal. yr BP. Although most parts of the Australian continent reveals a high degree of tectonic stability, research conducted since the 1970s has shown that the timing and elevation of a Holocene highstand varies systematically around its margin. This is attributed primarily to variations in the timing of the response of the ocean basins and shallow continental shelves to the increased ocean volumes following ice-melt, including a process known as ocean siphoning (i.e. glacio-hydro-isostatic adjustment processes). Several seminal studies in the early 1980s produced important data sets from the Australasian region that have provided a solid foundation for more recent palaeo-sea-level research. This review revisits these key studies emphasising their continuing influence on Quaternary research and incorporates relatively recent investigations to interpret the nature of post-glacial sea-level change around Australia. These include a synthesis of research from the Northern Territory, Queensland, New South Wales, South Australia and Western Australia. A focus of these more recent studies has been the re-examination of: (1) the accuracy and reliability of different proxy sea-level indicators; (2) the rate and nature of post-glacial sea-level rise; (3) the evidence for timing, elevation, and duration of mid-Holocene highstands; and, (4) the notion of mid- to late Holocene sea-level oscillations, and their basis. Based on this synthesis of previous research, it is clear that estimates of past sea-surface elevation are a function of eustatic factors as well as morphodynamics of individual sites, the wide variety of proxy sea-level indicators used, their wide geographical range, and their indicative meaning. Some progress has been made in understanding the variability of the accuracy of proxy indicators in relation to their contemporary sea level, the inter-comparison of the variety of dating techniques used and the nuances of calibration of radiocarbon ages to sidereal years. These issues need to be thoroughly understood before proxy sea-level indicators can be incorporated into credible reconstructions of relative sea-level change at individual locations. Many of the issues, which challenged sea-level researchers in the latter part of the twentieth century, remain contentious today. Divergent opinions remain about: (1) exactly when sea level attained present levels following the most recent post-glacial marine transgression (PMT); (2) the elevation that sea-level reached during the Holocene sea-level highstand; (3) whether sea-level fell smoothly from a metre or more above its present level following the PMT; (4) whether sea level remained at these highstand levels for a considerable period before falling to its present position; or (5) whether it underwent a series of moderate oscillations during the Holocene highstand.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several fringing coral reefs in Moreton Bay, Southeast Queensland, some 300 km south of the Great Barrier Reef (GBR), are set in a relatively high latitude, estuarine environment that is considered marginal for coral growth. Previous work indicated that these marginal reefs, as with many fringing reefs of the inner GBR, ceased accreting in the mid-Holocene. This research presents for the first time data from the subsurface profile of the mid-Holocene fossil reef at Wellington Point comprising U/Th dates of in situ and framework corals, and trace element analysis from the age constrained carbonate fragments. Based on trace element proxies the palaeo-water quality during reef accretion was reconstructed. Results demonstrate that the reef initiated more than 7,000 yr BP during the post glacial transgression, and the initiation progressed to the west as sea level rose. In situ micro-atolls indicate that sea level was at least 1 m above present mean sea level by 6,680 years ago. The reef remained in "catch-up" mode, with a seaward sloping upper surface, until it stopped aggrading abruptly at ca 6,000 yr BP; no lateral progradation occurred. Changes in sediment composition encountered in the cores suggest that after the laterite substrate was covered by the reef, most of the sediment was produced by the carbonate factory with minimal terrigenous influence. Rare earth element, Y and Ba proxies indicate that water quality during reef accretion was similar to oceanic waters, considered suitable for coral growth. A slight decline in water quality on the basis of increased Ba in the later stages of growth may be related to increased riverine input and partial closing up of the bay due to either tidal delta progradation, climatic change and/or slight sea level fall. The age data suggest that termination of reef growth coincided with a slight lowering of sea level, activation of ENSO and consequent increase in seasonality, lowering of temperatures and the constrictions to oceanic flushing. At the cessation of reef accretion the environmental conditions in the western Moreton Bay were changing from open marine to estuarine. The living coral community appears to be similar to the fossil community, but without the branching Acropora spp. that were more common in the fossil reef. In this marginal setting coral growth periods do not always correspond to periods of reef accretion due to insufficient coral abundance. Due to several environmental constraints modern coral growth is insufficient for reef growth. Based on these findings Moreton Bay may be unsuitable as a long term coral refuge for most species currently living in the GBR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the introduction of relaxed-clock molecular dating methods, the role of fossil calibration has expanded from providing a timescale, to also informing the models for molecular rate variation across the phylogeny. Here I suggest fossil calibration bounds for four mammal clades, Monotremata (platypus and echidnas), Macropodoidea (kangaroos and potoroos), Caviomorpha-Phiomorpha (South American and African hystricognath rodents), and Chiroptera (bats). In each case I consider sources of uncertainty in the fossil record and provide a molecular dating analysis to examine how the suggested calibration priors are further informed by other mammal fossil calibrations and molecular data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Late Sakmarian to early Artinskian (Early Permian) carbonate deposition was widespread in the marine intracratonic rift basins that extended into the interior of Eastern Gondwana from Timor in the north to the northern Perth Basin in the south. These basins spanned about 20° of paleolatitude (approximately 35°S to 55°S). This study describes the type section of the Maubisse Limestone in Timor-Leste, and compares this unit with carbonate sections in the Canning Basin (Nura Nura Member of the Poole Sandstone), the Southern Carnarvon Basin (Callytharra Formation) and the northern Perth Basin (Fossil Cliff Member of the Holmwood Shale). The carbonate units have no glacial influence and formed part of a major depositional cycle that, in the southern basins, overlies glacially influenced strata and lies a short distance below mudstone containing marine fossils and scattered dropstones (perhaps indicative of sea ice). In the south marine conditions became more restricted and were replaced by coal measures at the top of the depositional sequence. In the north, the carbonate deposits are possibly bryozoan–crinoidal mounds; whereas in the southern basins they form laterally continuous relatively thin beds, deposited on a very low-gradient seafloor, at the tops of shale–limestone parasequences that thicken upward in parasequence sets. All marine deposition within the sequence took place under very shallow (inner neritic) conditions, and the limestones have similar grain composition. Bryozoan and crinoidal debris dominate the grain assemblages and brachiopod shell fragments, foraminifera and ostracod valves are usually common. Tubiphytes ranged as far south as the Southern Carnarvon Basin, albeit rarely, but is more common to the north. Gastropod and bivalve shell debris, echinoid spines, solitary rugose corals and trilobite carapace elements are rare. The uniformity of the grain assemblage and the lack of tropical elements such as larger fusulinid foraminifera, colonial corals or dasycladacean algae indicate temperate marine conditions with only a small increase in temperature to the north. The depositional cycle containing the studied carbonate deposits represents a warmer phase than the preceding glacially influenced Asselian to early Sakmarian interval and the subsequent cool phase of the “mid” Artinskian that is followed by significant warming during the late Artinskian–early Kungurian. The timing of cooler and warmer intervals in the west Australian basins seems out-of-phase with the eastern Australian succession, but this may be a problem of chronostratigraphic miscorrelation due to endemic faunas and palynofloras.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-pedogenic carbonates, such as carbonate cement and nodules in the sandstones, are quite common in the terrestrial geological record. Unlike pedogenic carbonates, their stable isotope ratios lack investigations for paleo-climatic reconstructions. The present investigation therefore, explores the possibility of use of stable isotope studies of non-pedogenic carbonates from the Mb-Pleistocene Siwalik Group of sediments exposed in the Ramnagar sub-basin of the NW Himalaya. Petrographic studies reveal the dominance of micrite fabric in carbonate nodules both of pedogenic and non-pedogenic samples irrespective of specific stratigraphic unit However, calcite as cement in the sandstones shows the dominance of micrite fabric in the younger in age sediments. Seventy-two non-pedogenic carbonate samples from the carbonate nodules and cement in the Siwalik sandstones, ranging in age between similar to 1 Ma and 12.2 Ma, were analyzed for delta C-13 and delta O-18 values. The delta C-13 values vary from -24.77 parts per thousand to -1.1 parts per thousand and delta O-18 values vary from -15.34 parts per thousand to -7.81 parts per thousand. Pedogenic and non-pedogenic carbonates ranging in age between similar to 1 Ma and 6 Ma have largely similar delta C-13 values and the range of delta C-13 values indicate the dominance of C-4 type of vegetation. However, unlike pedogenic carbonates which showed the dominance of C-3 type of vegetation pre- 7 Ma on the basis of delta C-13 -depleted isotopic values (Singh et al., 2011), delta C-13 values are largely enriched in the corresponding aged non-pedogenic carbonates revealing no information on specific type of vegetation. Likewise, paleoprecipitational reconstructions from delta O-18 values in pedogenic carbonates showed a progressive increase in aridity from similar to 12 Ma to recent excluding short term increases in rainfall/monsoon intensity at around 10 Ma, 5 Ma, and 1.8 Ma (Singh et al., 2012). On the contrary, such reconstructions are not possible from the delta O-18 values of non-pedogenic carbonates and indeed the delta O-18 values of non-pedogenic carbonates are largely depleted to as much as 6 parts per thousand from the corresponding pedogenic carbonates. Such differences in delta C-13 and delta O-18 values of non-pedogenic carbonates from pedogenic carbonates are primarily due to the dependence of the former on groundwater conditions responsible for precipitating carbonate. Further, a comparison of isotopic values between non-pedogenic and pedogenic carbonates can be interpreted that post-6 Ma and pre-6 Ma non-pedogenic carbonates were largely formed by shallow and deep groundwater conditions respectively. The result of these investigative studies therefore, suggests that the stable delta C-13 and delta O-18 values of non-pedogenic carbonates, unlike the pedogenic carbonates and irrespective of nature of calcite fabric, showed their little importance in paleoclimatic and paleoecological reconstructions. (C) 2014 Elsevier B.V. All rights reserved.