943 resultados para Pair roller skaters
Resumo:
This article describes the development of the first ion pair solid phase extraction technique (IPSPE), which has been applied to the extraction of metformin from plasma samples. In addition an ion pair chromatographic method was developed for the specific HPLC determination of metformin. Several extraction and HPLC methods have been described previously for metformin, however, most of them did not solve the problems associated with the high polarity of this drug. Drug recovery in the developed method was found to be more than 98%. The limit of detection and limit of quantification was 3 and 5 ng/ml, respectively. The intraday and interday precision (measured by coefficient of variation, CV%) was always less than 9%. The accuracy (measured by relative error, R.E.%) was always less than 6.9%. Stability analysis showed that metformin is stable for at least 3 months when stored at -70degreesC. The method has been applied to 150 patient samples as part of a medication adherence study. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In 'Charge transfer from the negative-energy continuum: alternative mechanism for pair production in relativistic atomic collisions', Eichler (1995 Phys. Rev. Lett. 75 3653) proposes an alternative mechanism for capture by pair production, and from it derives an analytic expression for the total cross section with a surprisingly strong energy dependence. We show that, in fact, there is no alternative mechanism; rather the above mechanism may be more transparently viewed as an ionization-like transition in one centre with inclusion of continuum distortion by the second centre. We further show that to Centre the initial and final states on the target and projectile leads to confusion in the momentum transfer vectors, and hence, respectively that the alleged high-energy behaviour is erroneous.
Resumo:
Results are presented for simulations of electron-positron pair production in relativistic heavy-ion collisions leading to electron capture and positron ejection. We apply a two-center relativistic continuum distorted-wave model to represent the electron or positron dynamics during the collision process. The results are compared with experimental cross-section data for La57+ and Au79+ impact on gold, silver, and copper targets. The theory is in good agreement with experiment for La57+ impact, verifying the result that the process increases in importance with both collision energy and target atomic number, and improves upon previous simulations of this process.
Resumo:
A novel anthracene-tagged oligonucleotide can discriminate between a fully-matched DNA target sequence and one with a single mismatching base-pair through a remarkable difference in fluorescence emission intensity upon duplex formation.
Resumo:
Molecular beam cooled HCl was state selected by two-photon excitation of the V (1) summation operator(0(+)) [v=9,11-13,15], E (1) summation operator(0(+)) [v=0], and g (3) summation operator(-)(0(+)) [v=0] states through either the Q(0) or Q(1) lines of the respective (1,3) summation operator(0(+))<--<--X (1) summation operator(0(+)) transition. Similarly, HBr was excited to the V (1) summation operator(0(+)) [v=m+3, m+5-m+8], E (1) summation operator(0(+)) [v=0], and H (1) summation operator(0(+)) [v=0] states through the Q(0) or Q(1) lines. Following absorption of a third photon, protons were formed by three different mechanisms and detected using velocity map imaging. (1) H(*)(n=2) was formed in coincidence with (2)P(i) halogen atoms and subsequently ionized. For HCl, photodissociation into H(*)(n=2)+Cl((2)P(12)) was dominant over the formation of Cl((2)P(32)) and was attributed to parallel excitation of the repulsive [(2) (2)Pi4llambda] superexcited (Omega=0) states. For HBr, the Br((2)P(32))Br((2)P(12)) ratio decreases with increasing excitation energy. This indicates that both the [(3) (2)Pi(12)5llambda] and the [B (2) summation operator5llambda] superexcited (Omega=0) states contribute to the formation of H(*)(n=2). (2) For selected intermediate states HCl was found to dissociate into the H(+)+Cl(-) ion pair with over 20% relative yield. A mechanism is proposed by which a bound [A (2) summation operatornlsigma] (1) summation operator(0(+)) superexcited state acts as a gateway state to dissociation into the ion pair. (3) For all intermediate states, protons were formed by dissociation of HX(+)[v(+)] following a parallel, DeltaOmega=0, excitation. The quantum yield for the dissociation process was obtained using previously reported photoionization efficiency data and was found to peak at v(+)=6-7 for HCl and v(+)=12 for HBr. This is consistent with excitation of the repulsive A(2) summation operator(12) and (2) (2)Pi states of HCl(+), and the (3) (2)Pi state of HBr(+). Rotational alignment of the Omega=0(+) intermediate states is evident from the angular distribution of the excited H(*)(n=2) photofragments. This effect has been observed previously and was used here to verify the reliability of the measured spatial anisotropy parameters.
Resumo:
The nonlinear coupling between finite amplitude ion thermal waves (ITWs) and quasistationary density perturbations in a pair-ion plasma is considered. A generalized nonlinear Schrödinger equation is derived for the ITW electric field envelope, accounting for large amplitude quasistationary plasma slow motion describing the ITW ponderomotive force. The present theory accounts for the trapping of ITWs in a large amplitude ion density hole. The small amplitude limit is considered and exact analytical solutions are obtained. Finite amplitude solutions are obtained numerically and their characteristics are discussed.
Resumo:
Hypothesis: Ecological specialization facilitates co-existence of Coregonus spp. in Lake Stechlin. A difference in trophic ecology is the dominant means by which the species are ecologically segregated.
Resumo:
The amplitude modulation of magnetic field-aligned circularly polarized electromagnetic (CPEM) waves in a magnetized pair plasma is reexamined. The nonlinear frequency shifts include the effects of the radiation pressure driven density and compressional magnetic field perturbations as well as relativistic particle mass variations. The dynamics of the modulated CPEM wave packets is governed by a nonlinear Schrodinger equation, which has attractive and repulsive interaction potentials for fast and slow CPEM waves. The modulational stability of a constant amplitude CPEM wave is studied by deriving a nonlinear dispersion from the cubic Schrodinger equation. The fast (slow) CPEM mode is modulationally unstable (stable). Possible stationary amplitude solutions of the modulated fast (slow) CPEM mode can be represented in the form of bright and dark/gray envelope electromagnetic soliton structures. Localized envelope excitations can be associated with the microstructures in pulsar magnetospheres and in laboratory pair magnetoplasmas. (C) 2005 American Institute of Physics.
Resumo:
A pair plasma consisting of two types of ions, possessing equal masses and opposite charges, is considered. The nonlinear propagation of modulated electrostatic wave packets is studied by employing a two-fluid plasma model. Considering propagation parallel to the external magnetic field, two distinct electrostatic modes are obtained, namely a quasiacoustic lower moddfe and a Langmuir-like, as optic-type upper one, in agreement with experimental observations and theoretical predictions. Considering small yet weakly nonlinear deviations from equilibrium, and adopting a multiple-scale technique, the basic set of model equations is reduced to a nonlinear Schrodinger equation for the slowly varying electric field perturbation amplitude. The analysis reveals that the lower (acoustic) mode is stable and may propagate in the form of a dark-type envelope soliton (a void) modulating a carrier wave packet, while the upper linear mode is intrinsically unstable, and may favor the formation of bright-type envelope soliton (pulse) modulated wave packets. These results are relevant to recent observations of electrostatic waves in pair-ion (fullerene) plasmas, and also with respect to electron-positron plasma emission in pulsar magnetospheres. (c) 2006 American Institute of Physics.