868 resultados para Packed bed bioreactor
Resumo:
Spouted beds have been used in industry for operations such as drying, catalytic reactions, and granulation. Conventional cylindrical spouted beds suffer from the disadvantage of scaleup. Two-dimensional beds have been proposed by other authors as a solution for this problem. Minimum spouting velocity has been studied for such two-dimensional beds. A force balance model has been developed to predict the minimum spouting velocity and the maximum pressure drop. Effect of porosity on minimum spouting velocity and maximum pressure drop has been studied using the model. The predictions are in good agreement with the experiments as well as with the experimental results of other investigators.
Resumo:
This paper presents an analysis of membrane reactor (MR) operation and design for enhanced hydrogen production from the water gas shift (WGS) reaction. It has been established that membrane reactors can enhance an equilibrium limited reaction through product separation. However, the detailed effects of reactor setup, membrane configuration and catalyst volume have yet to be properly analysed for this reaction. This paper investigates new ideas for membrane reactors such as the development of new catalytic films, for improved interaction between the reaction and separation zones. Current membrane reactors utilise a packed bed of catalyst within the membrane tube, utilising a large volume of catalyst to drive reaction. This is still inefficient and provides only limited benefits over conventional WGS reactors. New reactor configurations look to optimise the interactive effects between reaction and separation to provide improved operation. In this paper, thin film catalysts were produced using dip coating and spray coating techniques. This technique produced catalyst coatings with good thickness, though the abrasion strength of the dip coated catalyst was quite low. The catalyst was tested in a packed bed reactor for temperature activity at low temperatures and catalyst activity at varying levels of excess water
Resumo:
The continuous separation of beet molasses resulting in a sucrose rich product and a non-sugar waste product was carried out using a rotating annular chromatograph. The annulus was 12 mm wide and 1.4 m long and was packed with a sodium charged 5.5% cross-linked polystyrene ion exchange resin. Separation was achieved by the simultaneous mechanisms of ion exclusion, size exclusion and partition chromatography. The entire packed bed was slowly rotated while beet molasses was fed continuously through a stationary feed nozzle to the top of the bed. Each molasses constituent having a different relative affinity for the packing and the deionised water mobile phase describes a characteristic helical path as it progresses from the stationary feed point to the bottom of the rotating bed. Each solute then elutes from the annulus at a different angular distance from the feed and separation of the multicomponent mixture is thereby achieved. When a 35% w/w sucrose beet molasses feed was used the throughput achievable was 45.1 kg sucrose m~3 resin h"1. In addition to beet molasses separation other carbohydrate mixtures were separated. In particular the separation of glucose and fructose by Ligand exchange chromatography on a calcium charged ion exchange bed was carried out. The effects of flowrates, concentration, rotation rate, temperature and particle size on resolution and dilution of constituents in the mixtures to be separated were studied. A small test rig was designed and built to determine the cause of liquid maldistribution around the annulus. The problem was caused by the porous bed support media becoming clogged with fines being introduced by eluent flows and off the resin. An outer ring was constructed to house the bed support which could be quickly replaced with the onset of maldistribution. The computer simulation of the operation of the rotating annular chromatograph has been carried out successfully.
Resumo:
A continuous multi-step synthesis of 1,2-diphenylethane was performed sequentially in a structured compact reactor. This process involved a Heck C-C coupling reaction followed by the addition of hydrogen to perform reduction of the intermediate obtained in the first step. Both of the reactions were catalysed by microspherical carbon-supported Pd catalysts. Due to the integration of the micro-heat exchanger, the static mixer and the mesoscale packed-bed reaction channel, the compact reactor was proven to be an intensified tool for promoting the reactions. In comparison with the batch reactor, this flow process in the compact reactor was more efficient as: (i) the reaction time was significantly reduced (ca. 7 min versus several hours), (ii) no additional ligands were used and (iii) the reaction was run at lower operational pressure and temperature. Pd leached in the Heck reaction step was shown to be effectively recovered in the following hydrogenation reaction section and the catalytic activity of the system can be mostly retained by reverse flow operation. © 2009 Elsevier Inc. All rights reserved.
Resumo:
Drastic improvements in styrene yield and selectivity were achieved in the oxidative dehydrogenation of ethylbenzene by staged feeding of O2. Six isothermal packed bed reactors were used in series with intermediate feeding of O2, while all EB was fed to the first reactor, diluted with helium or CO2 (1:5 molar ratio), resulting in total O2:EB molar feed ratios of 0.2-0.6. The two catalyst samples, γ-Al 2O3 and 5P/SiO2, that were applied both benefitted from this operation mode. The ethylbenzene conversion per stage and the selectivity to styrene were significantly improved. The production of COX was effectively reduced, while the selectivity to other side products remained unchanged. Compared with co-feeding at a total O 2:EB molar feed ratio of 0.6, by staged feeding the EB conversion (+15% points for both catalysts), ST selectivity (+4% points for both samples) and O2 (ST) selectivity (+9% points for γ-Al2O 3 and +17% points for 5P/SiO2) all improved. The ethylbenzene conversion over 5P/SiO2 can be increased from 18% to 70% by increasing the number of reactors from 1 to 6 with each reactor a total amount of O2 of 0.1 without the loss of ST selectivity (93%). For 5P/SiO2 a higher temperature (500 C vs. 450 C for Al 2O3) is required. Essentially more catalyst (5P/SiO 2) was required to achieve full O2 conversion in each reactor. Staged feeding of O2 does not eliminate the existing issues of the catalyst stability both in time-on stream and as a function of the number of catalyst regenerations (5P/SiO2), or the relatively moderate performance (relatively low styrene selectivity for γ-Al2O 3). © 2014 Elsevier B.V.
Resumo:
A packed bed microbalance reactor setup (TEOM-GC) is used to investigate the formation of coke as a function of time-on-stream on γ-Al2O3 and 3P/SiO2 catalyst samples under different conditions for the ODH reaction of ethylbenzene to styrene. All samples show a linear correlation of the styrene selectivity and yield with the initial coverage of coke. The COX production increases with the coverage of coke. On the 3 wt% P/SiO2 sample, the initial coke build-up is slow and the coke deposition rate increases with time. On alumina-based catalyst samples, a fast initial coke build-up takes place, decreasing with time-on-stream, but the amount of coke does not stabilize. A higher O2 : EB feed ratio results in more coke, and a higher temperature results in less coke. This coking behaviour of Al2O3 can be described by existing "monolayer-multilayer" models. Further, the coverage of coke on the catalyst varies with the position in the bed. For maximal styrene selectivity, the optimal coverage of coke should be sufficient to convert all O2, but as low as possible to prevent selectivity loss by COX production. This is in favour of high temperature and low O2 : EB feed ratios. The optimal coke coverage depends in a complex way on all the parameters: temperature, the O2 : EB feed ratio, reactant concentrations, and the type of starting material. This journal is
Resumo:
The design demands on water and sanitation engineers are rapidly changing. The global population is set to rise from 7 billion to 10 billion by 2083. Urbanisation in developing regions is increasing at such a rate that a predicted 56% of the global population will live in an urban setting by 2025. Compounding these problems, the global water and energy crises are impacting the Global North and South alike. High-rate anaerobic digestion offers a low-cost, low-energy treatment alternative to the energy intensive aerobic technologies used today. Widespread implementation however is hindered by the lack of capacity to engineer high-rate anaerobic digestion for the treatment of complex wastes such as sewage. This thesis utilises the Expanded Granular Sludge Bed bioreactor (EGSB) as a model system in which to study the ecology, physiology and performance of high-rate anaerobic digestion of complex wastes. The impacts of a range of engineered parameters including reactor geometry, wastewater type, operating temperature and organic loading rate are systematically investigated using lab-scale EGSB bioreactors. Next generation sequencing of 16S amplicons is utilised as a means of monitoring microbial ecology. Microbial community physiology is monitored by means of specific methanogenic activity testing and a range of physical and chemical methods are applied to assess reactor performance. Finally, the limit state approach is trialled as a method for testing the EGSB and is proposed as a standard method for biotechnology testing enabling improved process control at full-scale. The arising data is assessed both qualitatively and quantitatively. Lab-scale reactor design is demonstrated to significantly influence the spatial distribution of the underlying ecology and community physiology in lab-scale reactors, a vital finding for both researchers and full-scale plant operators responsible for monitoring EGSB reactors. Recurrent trends in the data indicate that hydrogenotrophic methanogenesis dominates in high-rate anaerobic digestion at both full- and lab-scale when subject to engineered or operational stresses including low-temperature and variable feeding regimes. This is of relevance for those seeking to define new directions in fundamental understanding of syntrophic and competitive relations in methanogenic communities and also to design engineers in determining operating parameters for full-scale digesters. The adoption of the limit state approach enabled identification of biological indicators providing early warning of failure under high-solids loading, a vital insight for those currently working empirically towards the development of new biotechnologies at lab-scale.
Resumo:
The objective of this research was to study phenol degradation in anaerobic fluidized bed reactors (AFBR) packed with polymeric particulate supports (polystyrene - PS, polyethylene terephthalate - PET, and polyvinyl chloride - PVC). The reactors were operated with a hydraulic retention time (HRT) of 24 h. The influent phenol concentration in the AFBR varied from 100 to 400 mg L-1, resulting in phenol removal efficiencies of similar to 100%. The formation of extracellular polymeric substances yielded better results with the PVC particles; however, deformations in these particles proved detrimental to reactor operation. PS was found to be the best support for biomass attachment in an AFBR for phenol removal. The AFBR loaded with PS was operated to analyze the performance and stability for phenol removal at feed concentrations ranging from 50 to 500 mg L-1. The phenol removal efficiency ranged from 90-100%.
Resumo:
A two-stage bioreactor was operated for a period of 140 days in order to develop a post-treatment process based on anaerobic bioxidation of sulfite. This process was designed for simultaneously treating the effluent and biogas of a full-scale UASB reactor, containing significant concentrations of NH4 and H2S, respectively. The system comprised of two horizontal-flow bed-packed reactors operated with different oxygen concentrations. Ammonium present in the effluent was transformed into nitrates in the first aerobic stage. The second anaerobic stage combined the treatment of nitrates in the liquor with the hydrogen sulfide present in the UASB-reactor biogas. Nitrates were consumed with a significant production of sulfate, resulting in a nitrate removal rate of 0.43 kg N m(3) day(-1) and a parts per thousand yen92 % efficiency. Such a removal rate is comparable to those achieved by heterotrophic denitrifying systems. Polymeric forms of sulfur were not detected (elementary sulfur); sulfate was the main product of the sulfide-based denitrifying process. S-sulfate was produced at a rate of about 0.35 kg m(3) day(-1). Sulfur inputs as S-H2S were estimated at about 0.75 kg m(3) day(-1) and Chemical Oxygen Demand (COD) removal rates did not vary significantly during the process. DGGE profiling and 16S rRNA identified Halothiobacillus-like species as the key microorganism supporting this process; such a strain has not yet been previously associated with such bioengineered systems.
Resumo:
An important application of solar thermal storage is for power generation or process heating. Low-temperature thermal storage in a packed rock bed is considered the best option for thermal storage for solar drying applications. In this chapter, mathematical formulations for conical have been developed. The model equations are solved numerically for charging/discharging cycles utilizing MATLAB. Results were compared with rock-bed storage with standard straight tank. From the simulated results, the temperature distribution was found to be more uniform in the truncated conical rock-bed storage. Also, the pressure drop over a long period of time in the conical thermal storage was as low as 25 Pa. Hence, the amount of power required from a centrifugal fan would be significantly lower. The flow of air inside the tank is simulated in SolidWorks software. From flow simulation, 3D modelling of flow is obtained to capture the actual scenario inside the tank.
Resumo:
An important application of thermal storage is solar energy for power generation or process heating. Low temperature thermal storage in a packed rock bed is considered best option for thermal storage for solar drying applications. In this paper, mathematical formulations for conical and cylindrical rock bed storage tanks have been developed. The model equations are solved numerically for charging/discharging cycles. From the simulated results, it was observed that for the same aspect ratio between the diameter and the length of the thermal storages, the conical thermal storage had better performance. The temperature distribution was found to be more uniform in the truncated conical shape rock bed storage. Also, the pressure drop over long period of time in the conical thermal storage was lower than that of the cylindrical thermal storage. Hence, the amount of power required from a centrifugal fan was lower.
Resumo:
Several mathematical models are available for estimation of effective thermal conductivity of nonreactive packed beds. Keeping in view the salient differences between metal hydride beds in which chemisorption of hydrogen takes place and conventional nonreactive packed beds, modified models are proposed here to predict the effective thermal conductivity. Variation in properties such as solid thermal conductivity and porosity during hydrogen absorption and desorption processes are incorporated. These extended models have been applied to simulate the effective thermal conductivity of the MmNi(4.5)Al(0.5) hydride bed and are compared with the experimental results. Applicability of the extended models for estimation of the effective thermal conductivity at different operating conditions such as pressure, temperature, and hydrogen concentration is discussed.
Resumo:
This article presents a theoretical analysis of heat and mass transfer in a silica gel + water adsorption process using scaling principles. A two-dimensional columnar packed adsorber domain is chosen for the study, with side and bottom walls cooled and vapour inlet from the top. The adsorption process is initiated from the cold walls with a temperature jump of 15 K, whereas the water vapour supply is maintained at a constant inlet pressure of 1 kPa. The first part of the study is dedicated to deriving relevant scales for the adsorption process by an order of magnitude analysis of energy, continuity and momentum equations. In the latter part, the derived scales are compared with the outcome of numerical studies performed for various domain widths and aspect ratio of bed. A good correlation between scaling and simulation results is observed, thereby validating the scaling approach. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Applications of hydriding materials for solid state hydrogen storage, hydrogen compression, thermal energy storage and sorption heating and cooling systems have been demonstrated successfully. However, the performance of these devices significantly depends upon heat and mass transfer characteristics of the reactive packed beds. One of the important parameters regulating heat and mass transfer in the hydriding bed is its effective thermal conductivity (ETC), which is dependent on several operating parameters such as pressure and temperature. ETC also varies significantly due to the variation of hydrogen concentration during the hydriding and dehydriding processes. Based on the extensive studies done by the authors on ETC of metal hydride beds, a review of experimental methods, mathematical studies and augmentation techniques is presented in this paper, with emphasis on the effects of operating parameters on ETC. (C) 2016 Elsevier Ltd. All rights reserved.
Resumo:
A near-isothermal micro-trickle bed reactor operated under radio frequency heating was developed. The reactor bed was packed with nickel ferrite micro-particles of 110. μm diameter, generating heat by the application of RF field at 180. kHz. Hydrodynamics in a co-current configuration was analysed and heat transfer rates were determined at temperature ranging from 55 to 100. °C. A multi-zone reactor bed of several heating and catalytic zones was proposed in order to achieve near-isothermal operations. Exact positioning, number of the heating zones and length of the heating zones composed of a mixture of nickel ferrite and a catalyst were determined by solving a one dimensional model of heat transfer by conduction and convection. The conductive losses contributed up to 30% in the total thermal losses from the reactor. Three heating zones were required to obtain an isothermal length of 50. mm with a temperature non-uniformity of 2. K. A good agreement between the modelling and experimental results was obtained for temperature profiles of the reactor. © 2013 Elsevier B.V.