998 resultados para PULP CELLS
Resumo:
Purpose: To evaluate the in vitro cytotoxic effects of three cleansing solutions used for chemical lavage of pulp exposures. Materials and Methods: the immortalized odontoblast cell line (MDPC-23) was plated (30,000 cells/cm(2)) and incubated for 72 hrs in 24-well dishes. After counting the cell number under inverted light microscopy, 20 mul of the experimental and control solutions were added to 980 mul of fresh culture medium. Then, hydrogen peroxide (3%, H2O2), sodium hypochlorite (6%, NaOCl) or calcium hydroxide-saline solution (5g of Ca(OH)(2) in 10 mi of sterile distilled water) were added to wells for experimental Groups 1, 2 and 3, respectively. The positive and negative control groups received Syntac Sprint bonding agent (SS) and phosphate buffered saline (PBS), respectively. Following incubation for 120 min the cell number was counted again, the cell morphology was evaluated by scanning electron microscopy (SEM) and the cell metabolism was determined by the methyltetrazolium (MTT) assay. The scores obtained from cell counting and MTT assay were analyzed with an ANOVA followed by Fisher's PLSD tests. Results: H2O2 NaOCl solutions, and SS bonding agent were more cytotoxic than Ca(OH)2 or PBS. In the groups with H2O2 Or SS, only a few cells remained attached to the bottom of wells. The difference between these two groups was not statistically significant. H2O2, NaOCl and SS depressed the mitochondrial enzyme response by 97.7%, 97.3%, and 95.0%, respectively. on the other hand, Ca(OH)2 depressed the metabolic activity of cells by only 5%. While H2O2, NaOCl and SS caused extreme changes on the cell morphology, neither Ca(OH)2 nor PBS promoted dramatic changes in the cell morphology.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Human pulp tissue was directly capped with All Bond 2, or calcium hydroxide and evaluated 7, 30, or 60 days after the procedures. Histological analysis was performed to assess the inflammatory cell response, tissue disorganization, dentin bridging, and the presence of bacteria. At 7 days, with All Bond 2 capping, there was a large area of neutrophilic infiltrate underlying the pulp capping material, and the death of adjacent odontoblasts, was observed. However, with time, the neutrophilic reaction was replaced by fibroblastic proliferation with macrophages and giant cells surrounding globules of resin scattered in the coronal pulp tissue. The persistent inflammatory reaction and hyaline alteration of extracellular matrix inhibited complete pulp repair or dentin bridging. In contrast, at 7 days, the pulp tissue capped with calcium hydroxide exhibited odontoblast-like cells organized underneath coagulation necrosis. Pulp repair evolved into apparent complete dentin bridge formation at 60 days. All Bond 2 did not appear to allow any pulp repair and does not appear to be indicated for direct pulp capping of human teeth. Copyright © 1999 by The American Association of Endodontists.
Resumo:
Objectives: To compare the response of human dental pulp capped with a mineral trioxide aggregate (MTA) and Ca(OH) 2 powder. Methods and Material: Pulp exposures were performed on the occlusal floor of 40 permanent premolars. The pulp was then capped with either Ca(OH) 2 powder (CH) or MTA and restored with resin composite. After 30 days (groups CH30 and MTA30) and 60 days (groups CH60 and MTA60), the teeth were extracted and processed for HE and categorized in a histological score system. The data were subjected to Kruskal-Wallis and Conover tests (α=0.05). Results: In regard to dentin bridge formation, CH30 showed a tendency towards superior performance compared to MTA30 (p>0.05), although the products showed comparable results at day 60. In the item Inflammation and General State of the Pulp (p>0.05), CH showed a tendency towards presenting a higher inflammatory response. In the item Other Pulpal Findings, MTA and Ca(OH) 2 showed equal and excellent performance after 30 and 60 days (p>0.05). Conclusion: After 30 days, Ca(OH) 2 powder covered with calcium hydroxide cement showed faster hard tissue bridge formation compared to MTA. After 60 days, Ca(OH) 2 powder or MTA materials showed a similar and excellent histological response with the formation of a hard tissue bridge in almost all cases with low inflammatory infiltrate. © Operative Dentistry, 2008.
Resumo:
Aim: The present randomized, controlled prospective study evaluated the histomorphological response of human dental pulps capped with two grey mineral trioxide aggregate (MTA) compounds. Methodology: Pulp exposures were performed on the occlusal floor of 40 human permanent pre-molars. The pulp was capped either with ProRoot (Dentsply) or MTA-Angelus (Angelus) and restored with zinc oxide eugenol cement. After 30 and 60 days, teeth were extracted and processed for histological examination and the effects on the pulp were scored. The data were subjected to Kruskal-Wallis and Conover tests (α = 0.05). Results: In five out of the 40 teeth bacteria were present in pulp tissue. No significant difference was observed between the two materials (P > 0.05) in terms of overall histological features (hard tissue bridge, inflammatory response, giant cells and particles of capping materials). Overall, 94% and 88% of the specimens capped with MTA-Angelus and ProRoot, respectively, showed either total or partial hard tissue bridge formation (P > 0.05). Conclusions: Both commercial materials ProRoot (Dentsply) and MTA-Angelus (Angelus) produced similar responses in the pulp when used for pulp capping in intact, caries-free teeth. © 2009 International Endodontic Journal.
Resumo:
The aim of this study was to evaluate the trans-enamel and trans-dentinal effects of a 35% hydrogen peroxide (H2O2) bleaching gel on odontoblast-like cells. Enamel/dentin discs obtained from bovine incisors were mounted in artificial pulp chambers (APCs). Three groups were formed: G1- 35% H2O2; G2- 35% H2O2 + halogen light application; G3- control. The treatments were repeated 5 times and the APCs were incubated for 12 h. Then, the extract was collected and applied for 24 h on the cells. Cell metabolism, total protein dosage and cell morphology were evaluated. Cell metabolism decreased by 62.09% and 61.83% in G1 and G2, respectively. The depression of cell metabolism was statistically significant when G1 and G2 were compared to G3. Total protein dosage decreased by 93.13% and 91.80% in G1 and G2, respectively. The cells in G1 and G2 exhibited significant morphological alterations after contact with the extracts. Regardless of halogen light application, the extracts caused significantly more intense cytopathic effects compared to the control group. After 5 consecutive applications of a 35% H2O2 bleaching agent, either catalyzed or not by halogen light, products of gel degradation were capable to diffuse through enamel and dentin causing toxic effects to the cells.
Resumo:
Objective: The aim of this study was to compare the production of the chemokines CCL3 and CXCL12 by cultured dental pulp fibroblasts from permanent (PDPF) and deciduous (DDPF) teeth under stimulation by Porphyromonas gingivalis LPS (PgLPS). Material and Methods: Primary culture of fibroblasts from permanent (n=3) and deciduous (n=2) teeth were established using an explant technique. After the fourth passage, fibroblasts were stimulated by increasing concentrations of PgLPS (0 - 10 pg/mL) at 1, 6 and 24 h. The cells were tested for viability through MTT assay, and production of the chemokines CCL3 and CXCL12 was determined through ELISA. Comparisons among samples were performed using One-way ANOVA for MTT assay and Two-way ANOVA for ELISA results. Results: Cell viability was not affected by the antigen after 24 h of stimulation. PgLPS induced the production of CCL3 by dental pulp fibroblasts at similar levels for both permanent and deciduous pulp fibroblasts. Production of CXCL12, however, was significantly higher for PDPF than DDPF at 1 and 6 h. PgLPS, in turn, downregulated the production of CXCL12 by PDPF but not by DDPF. Conclusion: These data suggest that dental pulp fibroblasts from permanent and deciduous teeth may present a differential behavior under PgLPS stimulation.
Resumo:
Introduction: Hydrogen peroxide tooth bleaching is claimed to cause alterations in dental tissue structures. This study investigated the influence of the number of bleaching sessions on pulp tissue in rats. Methods: Male Wistar rats were studied in 5 groups (groups 1S-5S) of 10 each, which differed by the number (1-5) of bleaching sessions. In each session, the animals were anesthetized, and 35% hydrogen peroxide gel was applied to 3 upper right molars. Two days after the experimental period, the animals were killed, and their jaws were processed for light microscope evaluation. Pulp tissue reactions were scored as follows: 1, no or few inflammatory cells and no reaction; 2, <25 cells and a mild reaction; 3, between 25 and 125 cells and a moderate reaction; and 4, 125 or more cells and a severe reaction. Results from each experimental group were compared between groups and within groups to the corresponding unbleached upper left molars and analyzed for significant differences using the Kruskal-Wallis test (P < .05). Results: All tissue sections showed significant bleaching-induced changes in the dental pulp. After 1 bleaching session, necrotic tissue in the pulp horns and underlying inflammatory changes were observed. The extent and intensity of these changes increased with the number of bleaching sessions. After 5 sessions, the changes included necrotic areas in the pulp tissue involving the second third of the radicular pulp and intense inflammation in the apical third. Conclusions: The number of bleaching sessions directly influenced the extent of pulp damage. © 2013 American Association of Endodontists.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundacao de Amparo a Pesquisa do Estado de sao Paulo (FAPESP)
Resumo:
To evaluate the cytotoxicity of dimethyl sulfoxide (DMSO) on the repair-related activity of cultured odontoblast-like MDPC-23 cells. Methods Solutions with different concentrations of DMSO (0.05, 0.1, 0.3, 0.5 and 1.0 mM), diluted in culture medium (DMEM), were placed in contact with MDPC-23 cells (5 × 104 cells/cm2) for 24 h. Eight replicates (n = 8) were prepared for each solutions for the following methods of analysis: violet crystal dye for cell adhesion (CA), quantification of total protein (TP), alizarin red for mineralization nodules formation (MN) and cell death by necrosis (flow cytometry); while twelve replicates (n = 12) were prepared for viable cell number (Trypan Blue) and cell viability (MTT assay). Data were analyzed by ANOVA and Tukey or Kruskal–Wallis and Mann–Whitney's tests (p < 0.05). Results Cell viability, adhesion and percentage of cell death by necrosis were not affected by DMSO at any concentration, with no statistical significant difference among the groups. A significant reduction in total protein production was observed for 0.5 and 1.0 mM of DMSO compared to the control while increased mineralized nodules formation was seen only for 1.0 mM DMSO. Significance: DMSO caused no or minor cytotoxic effects on the pulp tissue repair-related activity of odontoblast-like cells.
Resumo:
Objective: To evaluate the transdentinal cytotoxicity of three different concentrations of carbodiimide (EDC) or 5% glutaraldehyde (GA) on MDPC-23 cells. Methods: Seventy 0.4-mm-thick dentin disks obtained from human molars were adapted to artificial pulp chambers. MDPC-23 cells were seeded on the pulpal surface of the disks. After 48 hours, the occlusal dentin was acid-etched and treated for 60 seconds with one of the following solutions (n=10): no treatment (negative control); 0.1 M, 0.3 M, or 0.5 M EDC; 5% GA; Sorensen buffer; or 29% hydrogen peroxide (positive control). Cell viability and morphology were assessed by methyltetrazolium assay and scanning electron microscopy (SEM), respectively. The eluates were collected after the treatments and applied on MDPC-23 seeded in a 24-well plate to analyze cell death, total protein (TP), and collagen production. The last two tests were performed 24 hours and seven days after the challenge. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests (p<0.05). Results: EDC at all test concentrations did not reduce cell viability, while 5% GA did increase cell metabolism. Cell death by necrosis was not elicited by EDC or 5% GA. At the 24-hour period, 0.3 M and 0.5 M EDC reduced TP production by 18% and 36.8%, respectively. At seven days, increased TP production was observed in all groups. Collagen production at the 24-hour period was reduced when 0.5 M EDC was used. After seven days, no difference was observed among the groups. SEM showed no alteration in cell morphology or number, except in the hydrogen peroxide group. Conclusions: Treatment of acid-etched dentin with EDC or GA did not cause transdentinal cytotoxic effects on odontoblast-like cells.
Resumo:
The aim of this study was to evaluate the putative influence of diabetes without metabolic control in the loss of tooth structure as well as histological changes in dentin and pulp tissue in rats. Diabetes was induced in Wistar rats (n=25) by intravenous administration of alloxan (42mg/kg). Diabetic and non-diabetic control rats were evaluated at 1, 3, 6, 9 and 12 months of follow-up. In order to evaluate the presence and progression of dental caries and periapical lesions, hemimandibles were removed and submitted to radiographical, histological, and morphometrical procedures. Dental caries were detected after radiographical and histological evaluations in diabetic group from the third month of diabetes onset, increasing gradually in frequency and severity in periods. Diabetic rats dental pulps also presented significant reduction in volume density of collagen fibers and fibroblasts at third month, parallel with a trend towards the increase in inflammatory cells volume density. Diabetic rats presented a generalized pulp tissue necrosis after 6 months of diabetes induction. Moreover, periapical lesions were not detected in control group, while these lesions were observed in all rats after 3, 6, 9, and 12 months of diabetes induction. Uncontrolled diabetes seems to trigger the loss of tooth structure, associated to histological dental changes and mediates its evolution to progressive severe pulp and periapical lesions in rats. Therefore, diabetes may be considered a very important risk factor regarding alterations in dental pulp, development of dental caries, and periapical lesions.
Resumo:
This study investigated the transdentinal cytotoxicity of glutahaldehyde-containing solutions/materials on odontoblast-like cells. Dentin discs were adapted to artificial pulp chambers. MDPC-23 cells were seeded on the pulpal side of the discs and the occlusal surface was treated with the following solutions: water, 2% glutaraldehyde (GA), 5% GA, 10% GA, Gluma Comfort Bond+Desensitizer (GCB+De) or Gluma Desensitizer (GDe). Cell viability and morphology were assessed by the Alamar Blue assay and SEM. The eluates were collected and applied on cells seeded in 24-well plates. After 7 or 14 days the total protein (TP) production, alkaline phosphatase activity (ALP) and deposition of mineralized nodules (MN) were evaluated. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests (p<0.05). GA solutions were not cytotoxic against MDPC-23. GCB+De (85.1%) and GDe (77.2%) reduced cell viability as well as TP production and ALP activity at both periods. After 14 days, GCB+De and GDe groups produced less MN. Affected MDPC-23 presented deformation of the cytoskeleton and reduction of cellular projections. The treatment with 2.5%, 5% and 10% GA was not harmful to odontoblast-like cells. Conversely, when GA was combined with other components like HEMA, the final material became cytotoxic. Glutaraldehyde has been used to decrease dentin hypersensitivity. This substance is also capable of preventing resin-dentin bond degradation by cross-linking collagen and MMPs. This study showed that GA might be safe when applied on acid etched dentin. However, when combined with HEMA the product becomes cytotoxic.
Resumo:
Ethanol extracts of powdered genipap (Genipa americana L), umbu (Spondia tuberosa A.) and siriguela (Spondia purpurea L) prepared from separate pulp, seeds and peel were investigated for their (i) antioxidant capacity, which was evaluated by various known methods; (ii) acetylcholinesterase (AChE) inhibitory activity; and (iii) cytotoxic effect on corneal epithelial cells of sheep. The highest values of total phenolic content were obtained with peel and seed extracts. Siriguela and umbu (seeds and peel) extracts displayed the highest antioxidant activities. Lipid peroxidation assays using mimetic biomembranes and mouse liver homogenates indicated that genipap pulp is a promising antioxidant. The investigation of phenols and organic acid contents revealed the presence of quercetin, citric and quinic acids, chlorogenic acid derivatives, among others, in several extracts, with the highest amount found in siriguela seeds. Genipap pulp and siriguela seed ethanol extracts presented an AChE inhibition zone similar to that of the positive control, carbachol. AChE inhibition assay with chlorogenic acid, one of the main constituents of siriguela seeds, revealed that this acid showed activity similar to that of the control physostigmine. These data suggest that these extracts are potentially important antioxidant supplements for the everyday human diet, pharmaceutical and cosmetic industries. (C) 2012 Elsevier Ltd. All rights reserved.