172 resultados para PROTEUS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
As infecções do trato urinário (ITU) são definidas como a invasão e posterior multiplicação de microorganismos nos tecidos das vias urinárias, sendo a bactéria gram-negativa E.coli o principal uropatógeno envolvido nessa infecção. A avaliação para a presença de ITU é feita através do quadro clínico característico desse tipo de paciente e o exame de cultura de urina. As amostras positivas para as culturas são avaliadas quanto ao perfil de sensibilidade aos antimicrobianos dos agentes etiológicos encontrados. Descrever a porcentagem de ocorrência dos agentes etiológicos e o perfil de sensibilidade aos antimicrobianos das Infecções do Trato Urinário em pacientes ambulatoriais de Botucatu e região. Foram incluídas neste estudo culturas de urinas de pacientes atendidos em UBS de Botucatu e região Pólo Cuesta, no período de Janeiro de 2008 a Maio de 2010. As culturas positivas foram avaliadas quanto a porcentagem de ocorrência dos uropatógenos segundo sexo, faixa etária e origem. Foi utilizado o teste do qui-quadrado para verificar associação entre cada antimicrobiano e as porcentagens de sensibilidade e resistência encontradas. Foram avaliadas 11.768 culturas de urina provenientes de 11 municípios da região, sendo consideradas as culturas positivas (28%). Quanto à ocorrência dos agentes etiológicos verificou-se que a E.coli é responsável 58,76% dos casos. A distribuição dos uropatógenos segundo sexo revelou maior ocorrência de E.coli nos dois sexos. O segundo agente etiológico de maior ocorrência foi, nos homens o Proteus mirabilis e nas mulheres, o S. saprophyticus. Dentre as faixas etárias, a E.coli foi o patógeno de maior ocorrência. O perfil de sensibilidade aos antimicrobianos revelou que a E.coli é mais sensível a Ertapenem, Imipenem, Meropenem, Fosfomicina, Amicacina, Ceftriaxona, Nitrofurantoína e Norfloxacina; e mais resistente... (Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
The catalytic function of extended-spectrum β-lactamases can result in high degrees of bacterial resistance to β-lactamic antimicrobials and in the emergence of ESBL among the members of Enterobacteriaceae family, especially Klebsiella pneumoniae and Escherichia coli. This occurs due to the dissemination and emergence of new variants of these enzymes caused by the high utilization of antibiotics like broad-spectrum cephalosporins. The ESBL are β-lactamases capable of conferring bacterial resistance to the penicillins, 1st, 2nd and 3rd generation cephalosporins, and aztreonam (but not cephamycins and carbapenems) through the hydrolysis of these antibiotics. In view of this phenomenon, the exact screening and detection of the producers of ESBL are essential for the appropriate selection of the antimicrobial therapy. The purposes of this study were to evaluate the best antimicrobial for the selection of ESBL producers and to determine the best method for the detection of such microorganisms. We evaluated 200 sequential bacterial samples including the species Klebsiella pneumoniae (56.5%), Escherichia coli (34%), Proteus mirabilis (8.5%) and Klebsiella oxytoca (1%), previously characterized as ESBL producers between February and September 2008 in the Laboratory of Microbiology, Botucatu Medical School - UNESP, Botucatu, São Paulo State, Brazil. To select the ESBL-producer bacteria, we used the disks recommended by CLSI 2008, aztreonam (ATM), cefpodoxime (CPD), ceftriaxone (CRO), cefotaxime (CTX) and ceftazidime (CAZ), besides cefepime (FEP). ESBL production was confirmed by three methods: double disk screening, ESBL Etest®, and Vitek® automated system. The disks employed in the double disk screening were: penicillin associated with β-lactamase inhibitor, amoxicillin-clavulanic acid, and two β-lactamic antibiotics, ceftazidime and cefotaxime...(Complete abstract click electronic access below)
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Suppurative meningitis are rarely reported in dogs and cats. The present study aims to report the occurrence of suppurative meningitis secondary to otitis media and interna in a five-year-old female Persian cat examined at the Veterinary School of Unesp-Botucatu with acute progressive multifocal neurological alterations. Analysis of the cerebrospinal fluid (CSF) demonstrated predominance of neutrophils (90%) and the presence of bacteria. Therapy with antibiotics was initiated, but the animal came to die. beta-hemolytic Staphylococcus, beta-hemolytic Streptococcus and Proteus mirabilis were detected in fragments sent to culture. The present report demonstrates the importance of performing more specific exams such as complete CSF analysis in cases of otitis media and interna. This way, central nervous infections can be diagnosed and treated in a timely manner, as those are acute diseases with poor prognosis.
Resumo:
The Pst system is a high-affinity inorganic phosphate transporter found in many bacterial species. Streptococcus mutans, the etiological agent of tooth decay, carries a single copy of the pst operon composed of six cistrons (pstS, pstC1, pstC, pstB, smu.1134 and phoU). Here, we show that deletion of pstS, encoding the phosphate-binding protein, reduces phosphate uptake and impairs cell growth, which can be restored upon enrichment of the medium with high concentrations of inorganic phosphate. The relevance of Pst for growth was also demonstrated in the wild-type strain treated with an anti-PstS antibody. Nevertheless, a reduced ability to bind to saliva-coated surfaces was observed, along with the reduction of extracellular polysaccharide production, although no difference on pH acidification was observed between mutant and wild-type strains. Taken together, the present data indicate that the S.similar to mutans Pst system participates in phosphate uptake, cell growth and expression of virulence-associated traits.
Resumo:
Bannayan-Riley-Ruvalcaba syndrome (BRRS) is a rare autosomal, dominantly-inherited, hamartoma syndrome with distinct phenotypic features. Mutations in the PTEN gene have been identified in PTEN hamartoma tumor syndromes. Our aim was to determine the correlation of phenotype-genotype relationships in a BRRS case. We have evaluated a PTEN mutation in a patient with vascular anomalies and the phenotypic findings of BRRS. We described an 8-year-old girl with the clinical features of BRRS, specifically with vascular anomalies. The mutation in the PTEN gene was identified by DNA sequencing. In our patient, we defined a de novo nonsense R335X (c. 1003 C>T) mutation in exon 8, which results in a premature termination codon. Due to vascular anomalies and hemangioma, the patient's left leg was amputated 1 year after the hemangioma diagnosis. Bannayan - Riley - Ruvalcaba syndrome patients with macrocephaly and vascular anomalies should be considered for PTEN mutation analysis and special medical care.
Resumo:
LO, Denise Swei et al. Community-acquired urinary tract infection: age and gender-dependent etiology. J. Bras. Nefrol. [online]. 2013, vol.35, n.2, pp. 93-98. ISSN 0101-2800. http://dx.doi.org/10.5935/0101-2800.20130016. INTRODUCTION: Choosing the antimicrobial agent for initial therapy of urinary tract infection (UTI) is usually empirical and should consider the prevalence of uropathogens in different age groups and gender. OBJECTIVE: To establish prevalence rates of uropathogens in community-acquired UTI in relation to age and gender. METHODS: Crosssectional study conducted in the emergency department (ED) of a general hospital, from January to December, 2010, in patients younger than 15 years old who had clinical suspicion of UTI and collected quantitative urine culture. UTI was defined as urine culture with growth of a single agent > 100.000 colony forming units (cfu)/mL in a midstream collection or > 50.000 cfu/mL in urethral catheterization. RESULTS: There were 63.464 visits to ED. 2577 urine cultures were obtained, of whom 291 were positive for UTI (prevalence = 11.3% of clinical suspicion and 0.46% of visits), 212 cases (72.8%) in females, median age = 2.6 years. The predominant uropathogen was E. coli (76.6%), followed by Proteus mirabilis (10.3%) and Staphylococcus saprophyticus (4.1%). Among infants < 3 months, prevalence rates of E. coli were significantly lower (50% vs 78.4%; OR = 0.276; p = 0.006). Higher prevalences of Staphylococcus saprophyticus occurred among patients > 10 years (24.4% vs 0.4%; OR = 79.265; p < 0.0001). Proteus mirabilis was significantly more prevalent in boys than girls (24.0% vs 5.2%; OR = 5.786; p < 0.001). CONCLUSIONS: E. coli was the most prevalent community-acquired uropathogen. Nevertheless, initial empiric antimicrobial treatment of UTI should consider the significant prevalence of other agents different from E. coli in infants < 3 months, the high prevalence of Staphylococcus saprophyticus in patients > 10 years and Proteus mirabilis in males.
Resumo:
Semen collected from clinically healthy bulls at an artificial insemination centre was examined for bacterial diversity. While bacteria that are normally present in the common flora of bovine semen were absent, such as Mycoplasma sp., Proteus sp. and Corynebacterium sp., all semen samples contained an unusually high number of Pseudomonas aeruginosa strains. Analysis via pulsed field gel electrophoresis demonstrated that one particular P. aeruginosa strain, present in a sealed bottle of lubricant, was widespread in bull semen. This strain was shown to secrete substances that inhibited both the growth of bacteria constituting the normal bull sperm flora and the motility of spermatozoa in vitro. This study demonstrated that commercially available lubricants might contain bacteria that can spread amongst breeding bulls and affect the quality of semen. Bacteriological controls and species' identification are necessary at several production levels, including lubricants and extenders, to ensure high semen quality and avoid the spread of pathogens.
Resumo:
Eocene Thermal Maximum 2 (ETM2) occurred ~1.8 Myr after the Paleocene Eocene Thermal Maximum (PETM) and, like the PETM, was characterized by a negative carbon isotope excursion coupled with warming. We combined benthic foraminiferal and sedimentological records for Southeast Atlantic Sites 1263 (1500 m paleodepth) and 1262 (3600 m paleodepth) to show that benthic foraminiferal diversity and accumulation rates declined more precipitously and severely at the shallower site during peak ETM2. The sites are in close proximity, so differences in surface productivity cannot have caused this differential effect. Instead, on the basis of an analysis of climate modelling experiments, we infer that changes in ocean circulation pattern across ETM2 may have resulted in more pronounced warming at intermediate depths (Site 1263). The effects of more pronounced warming include increased metabolic rates, leading to a decrease in effective food supply and increased deoxygenation, thus potentially explaining the more severe benthic impacts at Site 1263. In response to more severe benthic disturbance, bioturbation may have decreased at Site 1263 as compared to Site 1262, hence differentially affecting the bulk carbonate record. We use a sediment-enabled Earth system model to test whether a reduction in bioturbation and/or the likely reduced carbonate saturation of more poorly ventilated waters can explain the more extreme excursion in bulk d13C and sharper transition in wt% CaCO3 at Site 1263. We find that both enhanced acidification and reduced bioturbation during peak ELMO conditions are needed to account for the observed features. Our combined ecological and modelling analysis illustrates the potential role of ocean circulation changes in amplifying local environmental changes and driving temporary, but drastic, loss of benthic biodiversity and abundance.
Resumo:
Benthic oxygen and carbon isotopic results from a depth transect on Maud Rise, Antarctica, provide the first evidence for Warm Saline Deep Water (WSDW) in the Paleogene oceans. Distinct reversals occur in the oxygen isotopic gradient between the shallower Hole 689B (Eocene depth ~1400 m; present-day depth 2080 m) and the deeper Hole 690B (Eocene depth ~2250 m; present-day depth 2914 m). The isotopic reversals, well developed by at least 46 Ma (middle middle Eocene), existed for much of the remaining Paleogene. We do not consider these reversals to be artifacts of differential diagenesis between the two sites or to have resulted from other potentially complicating factors. This being so, the results show that deep waters at Hole 690B were significantly warmer than deep waters at the shallower Hole 689B. A progressive decrease and eventual reversal in benthic to planktonic delta18O gradients in Hole 690B, demonstrate that the deeper waters became warmer relative to Antarctic surface waters during the Eocene. The warmer deep waters of the Paleogene are inferred to have been produced at middle to low latitudes, probably in the Tethyan region which contained extensive shallow-water platforms, ideal sites for the formation of high salinity water through evaporative processes. The ocean during the Eocene, and perhaps the Paleocene, is inferred to have been two-layered, consisting of warm, saline deep waters formed at low latitudes and overlain by cooler waters formed at high latitudes. This thermospheric ocean, dominated by halothermal circulation we name Proteus. The Neogene and modern psychrospheric ocean Oceanus is dominated by thermohaline circulation of deep waters largely formed at high latitudes. An intermediate condition existed during the Oligocene, with a three-layered ocean that consisted of cold, dense deep waters formed in the Antarctic (Proto-AABW), overlain by warm, saline deep waters from low latitudes, and in turn overlain by cool waters formed in the polar regions. This we name Proto-oceanus which combined both halothermal and thermohaline processes. The sequence of high latitude, major, climatic change inferred from the oxygen isotopic records is as follows: generally cooler earlier Paleocene; warming during the late Paleocene; climax of Cenozoic warmth during the early Eocene and continuing into the early middle Eocene; cooling mainly in a series of steps during the remainder of the Paleogene. Superimposed upon this Paleogene pattern, the Paleocene/Eocene boundary is marked by a brief but distinct warming that involved deep to surface waters and a reduction in surface to deep carbon and oxygen isotopic gradients. This event coincided with major extinctions among the deep-sea benthic foraminifers as shown by Thomas (1990 doi:10.2973/odp.proc.sr.113.123.1990). Salinity has played a major role in deep ocean circulation, and thus paleotemperatures cannot be inferred directly from the oxygen isotopic composition of Paleogene benthic foraminifers without first accounting for the salinity effect.
Resumo:
Oxygen and carbon isotope analyses have been carried out on calcareous skeletons of important recent groups of organisms. Annual temperature ranges and distinct developmental stages can be reconstructed from single shells with the aid of the micro-sampling technique made possible by modern mass-spectrometers. This is in contrast to the results of earlier studies which used bulk sampIes. The skeletons analysed are from Bermuda, the Philippines, the Persian Gulf and the continental margin off Peru. In these environments, seasonal salinity ranges and thus annual variations in the isotopic composition of the water are small. In addition, environmental parameters are weIl documented in these areas. The recognition of seasonal isotopic variations is dependant on the type of calcification. Shells built up by carbonate deposition at the margin, such as molluscs, are suitable for isotopic studies. Analysis is more difficult where chambers are added at the margin of the shell but where older chambers are simultaneously covered by a thin veneer of carbonate e. g. in rotaliid foraminifera. Organisms such as calcareous algae or echinoderms that thicken existing calcareous parts as weIl as growing in length and breadth are the most difficult to analyse. All organisms analysed show temperature related oxygen-isotope fractionation. The most recent groups fractionate oxygen isotopes in accordance with established d18O temperature relationships (Tab. 18, Fig. 42). These groups are deep-sea foraminifera, planktonic foraminifera, serpulids, brachiopods, bryozoa, almost all molluscs, sea urchins, and fish (otoliths). A second group of organisms including the calcareous algae Padina, Acetabularia, and Penicillus, as weIl as barnacles, cause enrichment of the heavy isotope 18O. Finally, the calcareous algae Amphiroa, Cymopolia and Halimeda, the larger foraminifera, corals, starfish, and holothurians cause enrichment of the lighter isotope 16O. Organisms causing non-equilibrium fractionation also record seasonal temperature variations within their skeletons which are reflected in stable-oxygen-isotope patterns. With the exception of the green algae Halimeda and Penicillus, all organisms analysed show lower d13C values than calculated equilibrium values (Tab. 18, Fig. 42). Especially enriched with the lighter isotope 12C are animals such as hermatypic corals and larger foraminifera which exist in symbiosis with other organisms, but also ahermatypic corals, starfish, and holothurians. With increasing age of the organisms, seven different d13C trends were observed within the skeletons. 1) No d13C variations are observed in deep-sea foraminifera presumably due to relatively stable environmental conditions. 2) Lower d13C values occur in miliolid larger foraminifera and are possibly related to increased growth with increasing age of the foraminifera. 3) Higher values are found in planktonic foraminifera and rotaliid larger foraminifera and can be explained by a slowing down of growth with increasing age. 4) A sudden change to lower d13C values at a distinct shell size occurs in molluscs and is possibly caused by the first reproductive event. 5) A low-high-Iow cycle in calcareous algae is possibly caused by variations in the stage of calcification or growth. 6) A positive correlation between d18O and d13C values is found in some hermatypic corals, all ahermatypic corals, in the septa of Nautilus and in the otoliths of fish. In hermatypic corals from tropical areas, this correlation is the result of the inverse relationship between temperature and light caused by summer cloud cover; in other groups it is inferred to be due to metabolic processes. 7) A negative correlation between d18O and d13C values found in hermatypic corals from the subtropics is explained by the sympathetic relationship between temperature and light in these latitudes. These trends show that the carbon isotope fractionation is controlled by the biology of the respective carbonate producing organisms. Thus, the carbon isotope distribution can provide information on the symbiont-host relationship, on metabolic processes and calcification and growth stages during ontogenesis of calcareous marine organisms.
Resumo:
Upper abyssal to lower bathyal benthic foraminifers from ODP Sites 689 (present water depth 2080 m) and 690 (present water depth 2941 m) on Maud Rise (eastern Weddell Sea, Antarctica) are reliable indicators of Maestrichtian through Neogene changes in the deep-water characteristics at high southern latitudes. Benthic foraminiferal faunas were divided into eight assemblages, with periods of faunal change at the early/late Maestrichtian boundary (69 Ma), at the early/late Paleocene boundary (62 Ma), in the latest Paleocene (57.5 Ma), in the middle early Eocene to late early Eocene (55-52 Ma), in the middle middle Eocene (46 Ma), in the late Eocene (38.5 Ma), and in the middle-late Miocene (14.9-11.5 Ma). These periods of faunal change may have occurred worldwide at the same time, although specific first and last appearances of deep-sea benthic foraminifers are commonly diachronous. There were minor faunal changes at the Cretaceous/Tertiary boundary (less than 14?7o of the species had last appearances at Site 689, less than 9% at Site 690). The most abrupt benthic foraminiferal faunal event occurred in the latest Paleocene, when the diversity dropped by 50% (more than 35% of species had last appearances) over a period of less than 25,000 years; after the extinction the diversity remained low for about 350,000 years. The highest diversities of the post-Paleocene occurred during the middle Eocene; from that time on the diversity decreased steadily at both sites. Data on faunal composition (percentage of infaunal versus epifaunal species) suggest that the waters bathing Maud Rise were well ventilated during the Maestrichtian through early Paleocene as well as during the latest Eocene through Recent. The waters appeared to be less well ventilated during the late Paleocene as well as the late middle through early late Eocene, with the least degree of ventilation during the latest Paleocene through early Eocene. The globally recognized extinction of deep-sea benthic foraminifers in the latest Paleocene may have been caused by a change in formational processes of the deep to intermediate waters of the oceans: from formation of deep waters by sinking at high latitudes to formation of deep to intermediate water of the oceans by evaporation at low latitudes. Benthic foraminiferal data (supported by carbon and oxygen isotopic data) suggest that there was a short period of intense formation of warm, salty deep water at the end of the Paleocene (with a duration of about 0.35 m.y.), and that less intense, even shorter episodes might have occurred during the late Paleocene and early Eocene. The faunal record from the Maud Rise sites agrees with published faunal and isotopic records, suggesting cooling of deep to intermediate waters in the middle through late Eocene.