881 resultados para PROTECTIVE COATINGS
Resumo:
Objective Recently, a number of studies have identified self-employed Protective Behavioral Strategies (PBS) as effective in decreasing the level of alcohol-related harm among young people. However, much of the published research has ignored important gender differences, such as women's increased tendency to rely on PBS that are social in nature. To further the understanding of women's PBS, the current study sought to investigate the nature and correlates of the strategies young women employ to keep their friends safe when drinking (i.e., peer-directed PBS). Method A scale measuring peer-directed PBS was developed and administered in conjunction with existing measures of alcohol consumption, personal PBS, and peer attachment. Participants consisted of 422 women aged 18–30 years, recruited among psychology students and the general public. Results Exploratory factor analysis revealed two clusters of peer-directed PBS; those that were aimed at reducing intoxication among one's friends and those that were designed to minimize alcohol-related harms. Further analysis found a positive relationship between women's tendency to implement personal and peer-directed PBS and that risky drinkers were less likely to engage in personal or peer-directed PBS (either type). Conclusion Findings indicate that personal and peer-directed PBS are related behaviors that are less frequently adopted by risky drinkers.
Resumo:
Explosive ordnance disposal (EOD) technicians are required to wear protective clothing to protect themselves from the threat of overpressure, fragmentation, impact and heat. The engineering requirements to minimise these threats results in an extremely heavy and cumbersome clothing ensemble that increases the internal heat generation of the wearer, while the clothing’s thermal properties reduce heat dissipation. This study aimed to evaluate the heat strain encountered wearing EOD protective clothing in simulated environmental extremes across a range of differing work intensities. Eight healthy males [age 25±6 years (mean ± sd), height 180±7 cm, body mass 79±9 kg, V˙O2max 57±6 ml.kg−1.min−1] undertook nine trials while wearing an EOD9 suit (weighing 33.4 kg). The trials involved walking on a treadmill at 2.5, 4 and 5.5 km⋅h−1 at each of the following environmental conditions, 21, 30 and 37°C wet bulb globe temperature (WBGT) in a randomised controlled crossover design. The trials were ceased if the participants’ core temperature reached 39°C, if heart rate exceeded 90% of maximum, if walking time reached 60 minutes or due to fatigue/nausea. Tolerance times ranged from 10–60 minutes and were significantly reduced in the higher walking speeds and environmental conditions. In a total of 15 trials (21%) participants completed 60 minutes of walking; however, this was predominantly at the slower walking speeds in the 21°C WBGT environment. Of the remaining 57 trials, 50 were ceased, due to attainment of 90% maximal heart rate. These near maximal heart rates resulted in moderate-high levels of physiological strain in all trials, despite core temperature only reaching 39°C in one of the 72 trials.
Resumo:
Ideal coating materials for implants should be able to induce excellent osseointegration, which requires several important parameters, such as good bonding strength, limited inflammatory reaction, balanced osteoclastogenesis and osteogenesis, to gain well-functioning coated implants with long-term life span after implantation. Bioactive elements, like Sr, Mg and Si, have been found to play important roles in regulating the biological responses. It is of great interest to combine bioactive elements for developing bioactive coatings on Ti-6Al-4V orthopedic implants to elicit multidirectional effects on the osseointegration. In this study, Sr, Mg and Si-containing bioactive Sr2MgSi2O7 (SMS) ceramic coatings on Ti-6Al-4V were successfully prepared by plasma-spray coating method. The prepared SMS coatings have significantly higher bonding strength (~37MPa) than conventional pure hydroxyapatite (HA) coatings (mostly in the range of 15-25 MPa). It was also found that the prepared SMS coatings switch the macrophage phenotype into M2 extreme, inhibiting the inflammatory reaction via the inhibition of Wnt5A/Ca2+ and Toll-like receptor (TLR) pathways of macrophages. In addition, the osteoclastic activities were also inhibited by SMS coatings. The expression of osteoclastogenesis related genes (RANKL and MCSF) in bone marrow derived mesenchymal cells (BMSCs) with the involvement of macrophages was decreased, while OPG expression was enhanced on SMS coatings compared to HA coatings, indicating that SMS coatings also downregulated the osteoclastogenesis. However, the osteogenic differentiation of BMSCs with the involvement of macrophages was comparable between SMS and HA coatings. Therefore, the prepared SMS coatings showed multidirectional effects, such as improving bonding strength, reducing inflammatory reaction and downregulating osteoclastic activities, but maintaining a comparable osteogenesis, as compared with HA coatings. The combination of bioactive elements of Sr, Mg and Si into bioceramic coatings can be a promising method to develop bioactive implants with multifunctional properties for orthopaedic application.
Resumo:
Hindered amine light stabilisers (HALS) are the most effective antioxidants currently available for polymer systems in post-production, in-service applications, yet the mechanism of their action is still not fully understood. Structural characterisation of HALS in polymer matrices, particularly the identification of structural modifications brought about by oxidative conditions, is critical to aid mechanistic understanding of the prophylactic effects of these molecules. In this work, electrospray ionisation tandem mass spectrometry (ESI-MS/MS) was applied to the analysis of a suite of commercially available 2,2,6,6-tetramethylpiperidine-based HALS. Fragmentation mechanisms for the \[M + H](+) ions are proposed, which provide a rationale for the product ions observed in the MS/MS and MS(3) mass spectra of N-H, N-CH(3), N-C(O)CH(3) and N-OR containing HALS (where R is an alkyl substituent). A common product ion at m/z 123 was identified for the group of antioxidants containing N-H, N-CH3 or N-C(0)CH3 functionality, and this product ion was employed in precursor ion scans on a triple quadrupole mass spectrometer to identify the HALS species present in a crude extract from of a polyester-based coil coating. Using MS/MS, two degradation products were unambiguously identified. This technique provides a simple and selective approach to monitoring HALS structures within complex matrices. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
RF magnetron concurrent sputtering of Hydroxyapatite and Ti forming functionally graded calcium phosphate-based composite bioactive films on Ti-6Al-4V orthopedic alloy is reported. Calcium oxide phosphate (4CaO•P2O5) is the main crystalline phase. In vitro cell culturing tests suggest outstanding biocompatibility of the Ca-P-Ti films. Images of the plasma-enhanced sputtering processes and cell culturing are presented and discussed.
Resumo:
A paradigm shift has taken place in which bone implant materials has gone from being relatively inert to having immunomodulatory properties, indicating the importance of immune response when these materials interact with the host tissues. It has therefore become important to endow the implant materials with immunomodulatory properties favouring osteogenesis and osseointegration. Strontium, zinc and silicon are bioactive elements that have important roles in bone metabolism and that also elicit significant immune responses. In this study, Sr-, Zn- and Si-containing bioactive Sr2ZnSi2O7 (SZS) ceramic coatings on Ti–6Al–4V were successfully prepared by a plasma-spray coating method. The SZS coatings exhibited slow release of the bioactive ions with significantly higher bonding strength than hydroxyapatite (HA) coatings. SZS-coated Ti–6Al–4V elicited significant effects on the immune cells, inhibiting the release of pro-inflammatory cytokines and fibrosis-enhancing factors, while upregulating the expression of osteogenic factors of macrophages; moreover, it could also inhibit the osteoclastic activities. The RANKL/RANK pathway, which enhances osteoclastogenesis, was inhibited by the SZS coatings, whereas the osteogenic differentiation of bone marrow mesenchymal stromal cells (BMSCs) was significantly enhanced by the SZS coatings/macrophages conditioned medium, probably via the activation of BMP2 pathway. SZS coatings are, therefore, a promising material for orthopaedic applications, and the strategy of manipulating the immune response by a combination of bioactive elements with controlled release has the potential to endow biomaterials with beneficial immunomodulatory properties.
Resumo:
The plasma-assisted RF sputtering deposition of a biocompatible, functionally graded calcium phosphate bioceramic on a Ti6A14 V orthopedic alloy is reported. The chemical composition and presence of hydroxyapatite (HA), CaTiO3, and CaO mineral phases can be effectively controlled by the process parameters. At higher DC biases, the ratio [Ca]/[P] and the amount of CaO increase, whereas the HA content decreases. Optical emission spectroscopy suggests that CaO+ is the dominant species that responds to negative DC bias and controls calcium content. Biocompatibility tests in simulated body fluid confirm a positive biomimetic response evidenced by in-growth of an apatite layer after 24 h of immersion.
Resumo:
The influence of ion current density on the thickness of coatings deposited in a vacuum arc setup has been investigated to optimize the coating porosity. A planar probe was used to measure the ion current density distribution across plasma flux. A current density from 20 to 50 A/m2 was obtained, depending on the probe position relative to the substrate center. TiN coatings were deposited onto the cutting inserts placed at different locations on the substrate, and SEM was used to characterize the surfaces of the coatings. It was found that lowdensity coatings were formed at the decreased ion current density. A quantitative dependence of the coating thickness on the ion current density in the range of 20-50 A/m2 were obtained for the films deposited at substrate bias of 200 V and nitrogen pressure 0.1 Pa, and the coating porosity was calculated. The coated cutting inserts were tested by lathe machining of the martensitic stainless steel AISI 431. The results may be useful for controlling ion flux distribution over large industrial-scale substrates.
Resumo:
This study evaluated the physiological tolerance times when wearing explosive and chemical (>35kg) personal protective equipment (PPE) in simulated environmental extremes across a range of differing work intensities. Twelve healthy males undertook nine trials which involved walking on a treadmill at 2.5, 4 and 5.5 km.h-1 in the following environmental conditions, 21, 30 and 37 °C wet bulb globe temperature (WBGT). Participants exercised for 60 min or until volitional fatigue, core temperature reached 39 °C, or heart rate exceeded 90% of maximum. Tolerance time, core temperature, skin temperature, mean body temperature, heart rate and body mass loss were measured. Exercise time was reduced in the higher WBGT environments (WBGT37
Resumo:
In this essay, I present a reflective and generative analysis of Business Process Management research, in which I analyze process management and the surrounding research program from the viewpoint of a theoretical paradigm embracing analytical, empirical, explanatory and design elements. I argue that this view not only reconciles different perceptions of BPM and different research streams, but that it also informs ways in which the BPM research program could develop into a much richer, more inclusive and overall more significant body of work than it has to date. I define three perspectives on a BPM research agenda, give several examples of exciting existing research, and offer key opportunities for further research that can (a) strengthen the core of BPM, (b) generate novel theory from BPM in relevant and topical big issue domains, and (c) explore more rigorously and comprehensively the protective belt of BPM assumptions that much of the present research abides by. The essay ends with some recommendations for continuing the debate about what constitutes BPM and some suggestions for how future research in this area might be carried out.
Resumo:
Aims and objectives To investigate whether physical activity is a protective factor against metabolic syndrome in middle-aged and older women. Background Socio-demographic and lifestyle behaviour factors contribute to metabolic syndrome. To minimise the risk of metabolic syndrome, several global guidelines recommend increasing physical activity level. However, only limited research has investigated the relationship between physical activity levels and metabolic syndrome in middle-aged and older women after adjusting for socio-demographic and lifestyle behaviour factors. Design Cross-sectional design. Methods A convenience sample of 326 middle-aged and older women was recruited. Metabolic syndrome was confirmed according to the National Cholesterol Education Program, Adult Treatment Panel III guidelines, and physical activity levels were measured by the International Physical Activity Questionnaire. Results The sample had a mean age of 60•9 years, and the prevalence of metabolic syndrome was 43•3%. Postmenopausal women and women with low socioeconomic status (low-education background, without personal income and currently unemployed) had a significantly higher risk of developing metabolic syndrome. After adjusting for significant socio-demographic and lifestyle behaviour factors, the women with moderate or high physical activity levels had a significantly lower (OR = 0•10; OR = 0•11, p < 0•001) risk of metabolic syndrome and a lower risk for each specific component of metabolic syndrome, including elevated fasting plasma glucose (OR = 0•29; OR = 0•26, p = 0•009), elevated blood pressure (OR = 0•18; OR = 0•32, p = 0•029), elevated triglycerides (OR = 0•41; OR = 0•15, p = 0•001), reduced high-density lipoprotein (OR = 0•28; OR = 0•27, p = 0•004) and central obesity (OR = 0•31; OR = 0•22, p = 0•027). Conclusions After adjusting for socio-demographic and lifestyle behaviour factors, physical activity level was a significant protective factor against metabolic syndrome in middle-aged and older women. Higher physical activity levels (moderate or high physical activity level) reduced the risk of metabolic syndrome in middle-aged and older women. Relevance to clinical practice Appropriate strategies should be developed to encourage middle-aged and older women across different socio-demographic backgrounds to engage in moderate or high levels of physical activity to reduce the risk of metabolic syndrome.
Resumo:
Objective. To evaluate the effectiveness of a single-session online theory of planned behaviour (TPB)-based intervention to improve sun-protective attitudes and behaviour among Australian adults. Methods. Australian adults (N = 534; 38.7% males; Mage = 39.3 years) from major cities (80.9%), regional (17.6%) and remote areas (1.5%)were recruited and randomly allocated to an intervention (N=265) and information only group (N = 267). The online intervention focused on fostering positive attitudes, perceptions of normative support, and control perceptions for sun protection. Participants completed questionnaires assessing standard TPB measures (attitude, subjective norm, perceived behavioural control, intention, behaviour) and extended TPB constructs of group norm (friends, family), personal norm, and image norm, pre-intervention (Time 1) and one week (Time 2) and one month post-intervention (Time 3). Repeated Measures Multivariate Analysis of Variance tested intervention effects across time. Results. Intervention participants reported more positive attitudes towards sun protection and used sunprotective measures more often in the subsequent month than participants receiving information only. The intervention effects on control perceptions and norms were non-significant. Conclusions. A theory-based online intervention fostering more favourable attitudes towards sun safety can increase sun protection attitudes and self-reported behaviour among Australian adults in the short term.
Resumo:
Background The high recurrence rate of chronic venous leg ulcers has a significant impact on an individual’s quality of life and healthcare costs. Objectives This study aimed to identify risk and protective factors for recurrence of venous leg ulcers using a theoretical approach by applying a framework of self and family management of chronic conditions to underpin the study. Design Secondary analysis of combined data collected from three previous prospective longitudinal studies. Setting The contributing studies’ participants were recruited from two metropolitan hospital outpatient wound clinics and three community-based wound clinics. Participants Data were available on a sample of 250 adults, with a leg ulcer of primarily venous aetiology, who were followed after ulcer healing for a median follow-up time of 17 months after healing (range: 3 to 36 months). Methods Data from the three studies were combined. The original participant data were collected through medical records and self-reported questionnaires upon healing and every 3 months thereafter. A Cox proportion-hazards regression analysis was undertaken to determine the influential factors on leg ulcer recurrence based on the proposed conceptual framework. Results The median time to recurrence was 42 weeks (95% CI 31.9–52.0), with an incidence of 22% (54 of 250 participants) recurrence within three months of healing, 39% (91 of 235 participants) for those who were followed for six months, 57% (111 of 193) by 12 months, 73% (53 of 72) by two years and 78% (41 of 52) of those who were followed up for three years. A Cox proportional-hazards regression model revealed that the risk factors for recurrence included a history of deep vein thrombosis (HR 1.7, 95% CI 1.07–2.67, p=0.024), history of multiple previous leg ulcers (HR 4.4, 95% CI 1.84–10.5, p=0.001), and longer duration (in weeks) of previous ulcer (HR 1.01, 95% CI 1.003–1.01, p<0.001); while the protective factors were elevating legs for at least 30 minutes per day (HR 0.33, 95% CI 0.19–0.56, p<0.001), higher levels of self-efficacy (HR 0.95, 95% CI 0.92–0.99, p=0.016), and walking around for at least three hours/day (HR 0.66, 95% CI 0.44–0.98, p=0.040). Conclusions Results from this study provide a comprehensive examination of risk and protective factors associated with leg ulcer recurrence based on the chronic disease self and family management framework. These results in turn provide essential steps towards developing and testing interventions to promote optimal prevention strategies for venous leg ulcer recurrence.
Resumo:
Background Explosive ordnance disposal (EOD) technicians are often required to wear specialised clothing combinations that not only protect against the risk of explosion but also potential chemical contamination. This heavy (>35kg) and encapsulating ensemble is likely to increase physiological strain by increasing metabolic heat production and impairing heat dissipation. This study investigated the physiological tolerance times of two different chemical protective undergarments, commonly worn with EOD personal protective clothing, in a range of simulated environmental extremes and work intensities Methods Seven males performed eighteen trials wearing two ensembles. The trials involved walking on a treadmill at 2.5, 4 and 5.5 km.h-1 at each of the following environmental conditions, 21, 30 and 37°C wet bulb globe temperature (WBGT). The trials were ceased if the participants’ core temperature reached 39°C, if heart rate exceeded 90% of maximum, if walking time reached 60 minutes or due to volitional fatigue. Results Physiological tolerance times ranged from 8 to 60 min and the duration (mean difference: 2.78 min, P>0.05) were similar in both ensembles. A significant effect for environment (21>30>37°C WBGT, P<0.05) and work intensity (2.5>4>5.5 km.h-1, P< 0.05) was observed in tolerance time. The majority of trials across both ensembles (101/126; 80.1%) were terminated due to participants achieving a heart rate equivalent to greater than 90% of their maximum. Conclusions Physiological tolerance times wearing these two chemical protective undergarments, worn underneath EOD personal protective clothing, were similar and predominantly limited by cardiovascular strain.
Resumo:
This thesis was concerned with the protective mechanisms of first aid training in the context of peer support. Using a randomised control trial design the current program of research explores first aid training in the school setting and identifies the key components of effective school-based first aid training programs. In particular, examining whether first aid training and associated knowledge could be protective for early adolescents. This broader framing considered whether first aid impacted on increasing behaviour and attitudes towards helping an injured friend, and reducing personal risk taking and related injury.