830 resultados para PRINCIPAL COMPONENTS-ANALYSIS
Resumo:
Background Several researchers seek methods for the selection of homogeneous groups of animals in experimental studies, a fact justified because homogeneity is an indispensable prerequisite for casualization of treatments. The lack of robust methods that comply with statistical and biological principles is the reason why researchers use empirical or subjective methods, influencing their results. Objective To develop a multivariate statistical model for the selection of a homogeneous group of animals for experimental research and to elaborate a computational package to use it. Methods The set of echocardiographic data of 115 male Wistar rats with supravalvular aortic stenosis (AoS) was used as an example of model development. Initially, the data were standardized, and became dimensionless. Then, the variance matrix of the set was submitted to principal components analysis (PCA), aiming at reducing the parametric space and at retaining the relevant variability. That technique established a new Cartesian system into which the animals were allocated, and finally the confidence region (ellipsoid) was built for the profile of the animals’ homogeneous responses. The animals located inside the ellipsoid were considered as belonging to the homogeneous batch; those outside the ellipsoid were considered spurious. Results The PCA established eight descriptive axes that represented the accumulated variance of the data set in 88.71%. The allocation of the animals in the new system and the construction of the confidence region revealed six spurious animals as compared to the homogeneous batch of 109 animals. Conclusion The biometric criterion presented proved to be effective, because it considers the animal as a whole, analyzing jointly all parameters measured, in addition to having a small discard rate.
Resumo:
Characterization of population genetic variation and structure can be used as tools for research in human genetics and population isolates are of great interest. The aim of the present study was to characterize the genetic structure of Xavante Indians and compare it with other populations. The Xavante, an indigenous population living in Brazilian Central Plateau, is one of the largest native groups in Brazil. A subset of 53 unrelated subjects was selected from the initial sample of 300 Xavante Indians. Using 86,197 markers, Xavante were compared with all populations of HapMap Phase III and HGDP-CEPH projects and with a Southeast Brazilian population sample to establish its population structure. Principal Components Analysis showed that the Xavante Indians are concentrated in the Amerindian axis near other populations of known Amerindian ancestry such as Karitiana, Pima, Surui and Maya and a low degree of genetic admixture was observed. This is consistent with the historical records of bottlenecks experience and cultural isolation. By calculating pair-wise F-st statistics we characterized the genetic differentiation between Xavante Indians and representative populations of the HapMap and from HGDP-CEPH project. We found that the genetic differentiation between Xavante Indians and populations of Ameridian, Asian, European, and African ancestry increased progressively. Our results indicate that the Xavante is a population that remained genetically isolated over the past decades and can offer advantages for genome-wide mapping studies of inherited disorders.
Resumo:
The main objective of this study was to apply three-mode principal component analysis to assess the triple interaction (genotype x location x feeding) on direct genetic value for weight at 205 days of age. We used 60 sires with offspring in three regions of northeastern Brazil (Maranhao, Mata and Agreste, and Reconcavo Baiano) and raised on a pasture regime or with supplementation. There was no interaction between genotype and location, but there was a correlation between genotype and direct effect of feeding. The use of sires should be dictated according to the system of rearing of their offspring.
Resumo:
We investigated dietary intake patterns (DIP) in adolescents (14-18 year-olds) and the association with demographic and socioeconomic characteristics and lifestyle variables. This school-based survey was carried out among high school students from the city of Maringa in the state of Parana (PR), Brazil (2007). The sample included 991 students (54.5% girls) from high schools. DIPs were investigated by the frequency of weekly consumption of each food group: vegetables, fruit, rice, beans, fried food, sweet food, milk, soda, meat, eggs, alcoholic drinks. Independent variables were: demographic and socioeconomic characteristics and lifestyle variables. DIPS were identified using principal component analysis with orthogonal rotation (varimax). Three components were extracted. Component 1 (fried foods, sweets and soft drinks) was positively associated with not having breakfast for girls and dinner for boys. Moreover, component 2 (consumption of fruit and vegetables) was positively associated with having breakfast at home for boys and number of meals for girls. Component 3 (beans, eggs and meat) was positively associated with having lunch, employment and sedentary behavior level for girls. However, it was negatively associated with having lunch and dinner for boys. Adolescents who have healthier eating patterns also had other healthier behaviors regardless of gender. However, factors associated with dietary patterns differ between boys and girls. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Improvements in the analysis of microarray images are critical for accurately quantifying gene expression levels. The acquisition of accurate spot intensities directly influences the results and interpretation of statistical analyses. This dissertation discusses the implementation of a novel approach to the analysis of cDNA microarray images. We use a stellar photometric model, the Moffat function, to quantify microarray spots from nylon microarray images. The inherent flexibility of the Moffat shape model makes it ideal for quantifying microarray spots. We apply our novel approach to a Wilms' tumor microarray study and compare our results with a fixed-circle segmentation approach for spot quantification. Our results suggest that different spot feature extraction methods can have an impact on the ability of statistical methods to identify differentially expressed genes. We also used the Moffat function to simulate a series of microarray images under various experimental conditions. These simulations were used to validate the performance of various statistical methods for identifying differentially expressed genes. Our simulation results indicate that tests taking into account the dependency between mean spot intensity and variance estimation, such as the smoothened t-test, can better identify differentially expressed genes, especially when the number of replicates and mean fold change are low. The analysis of the simulations also showed that overall, a rank sum test (Mann-Whitney) performed well at identifying differentially expressed genes. Previous work has suggested the strengths of nonparametric approaches for identifying differentially expressed genes. We also show that multivariate approaches, such as hierarchical and k-means cluster analysis along with principal components analysis, are only effective at classifying samples when replicate numbers and mean fold change are high. Finally, we show how our stellar shape model approach can be extended to the analysis of 2D-gel images by adapting the Moffat function to take into account the elliptical nature of spots in such images. Our results indicate that stellar shape models offer a previously unexplored approach for the quantification of 2D-gel spots. ^
Resumo:
Longitudinal principal components analyses on a combination of four subcutaneous skinfolds (biceps, triceps, subscapular and suprailiac) were performed using data from the London Longitudinal Growth Study. The main objectives were to discover at what age during growth sex differences in body fat distribution occur and to see if there is continuity in body fatness and body fat distribution from childhood into the adult status (18 years). The analyses were done for four age sectors (3mon-3yrs, 3yrs-8yrs, 8yrs-18yrs and 3yrs-18yrs). Longitudinal principal component one (LPC1) for each age interval in both sexes represents the population mean fat curve. Component two (LPC2) is a velocity of fatness component. Component three (LPC3) in the 3mon-3yrs age sector represents infant fat wave in both sexes. In the next two age sectors component three in males represents peaks and shifts in fat growth (change in velocity), while in females it represents body fat distribution. Component four (LPC4) in the same two age sectors is a reversal in the sexes of the patterns seen for component three, i.e., in males it is body fat distribution and in females velocity shifts. Components five and above represent more complicated patterns of change (multiple increases and decreases across the age interval). In both sexes there is strong tracking in fatness from middle childhood to adolescence. In males only there is also a low to moderate tracking of infant fat with middle to late childhood fat. These data are strongly supported in the literature. Several factors are known to predict adult fatness among the most important being previous levels of fatness (at earlier ages) and the age at rebound. In addition we found that the velocity of fat change in middle childhood was highly predictive of later fatness (r $\approx -$0.7), even more so than age at rebound (r $\approx -$0.5). In contrast to fatness (LPC1), body fat distribution (LPC3-LPC4) did not track well even though significant components of body fat distribution occur at each age. Tracking of body fat distribution was higher in females than males. Sex differences in body fat distribution are non existent. Some sex differences are evident with the peripheral-to-central ratios after age 14 years. ^