957 resultados para PRESSURE RANGE GIGA PA
Resumo:
Time-resolved kinetic studies of the reaction of germylene, GeH2, generated by laser. ash photolysis of 3,4-dimethyl-1-germacyclopent-3-ene, have been carried out to obtain rate constants for its bimolecular reaction with 2-butyne, CH3C CCH3. The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at five temperatures in the range 300-556 K. The second order rate constants obtained by extrapolation to the high pressure limits at each temperature, fitted the Arrhenius equation: log(k(infinity)/cm(3) molecule(-1) s(-1)) = (-10.46 +/- 10.06) + (5.16 +/- 10.47) kJ mol(-1)/ RT ln 10 Calculations of the energy surface of the GeC4H8 reaction system were carried out employing the additivity principle, by combining previous quantum chemical calculations of related reaction systems. These support formation of 1,2-dimethylvinylgermylene (rather than 2,3-dimethylgermirene) as the end product. RRKM calculations of the pressure dependence of the reaction are in reasonable agreement with this finding. The reactions of GeH2 with C2H2 and with CH3CRCCH3 are compared and contrasted.
Resumo:
Time-resolved kinetic studies of silylene, SiH2, generated by laser flash photolysis of 1-silacyclopent-3-ene and phenylsilane, have been carried out to obtain rate constants for its bimolecular reactions with methanol, ethanol, 1-propanol, 1-butanol and 2-methyl-1-butanol. The reactions were studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at room temperature. In the study with methanol several buffer gases were used. All five reactions showed pressure dependences characteristic of third body assisted association reactions. The rate constant pressure dependences were modelled using RRKM theory, based on Eo values of the association complexes obtained by ab initio calculation (G3 level). Transition state models were adjusted to fit experimental fall-off curves and extrapolated to obtain k∞ values in the range 1.9 to 4.5 × 10-10 cm3 molecule-1 s-1. These numbers, corresponding to the true bimolecular rate constants, indicate efficiencies of between 16 and 67% of the collision rates for these reactions. In the reaction of SiH2 + MeOH there is a small kinetic component to the rate which is second order in MeOH (at low total pressures). This suggests an additional catalysed reaction pathway, which is supported by the ab initio calculations. These calculations have been used to define specific MeOH-for-H2O substitution effects on this catalytic pathway. Where possible our experimental and theoretical results are compared with those of previous studies.
Resumo:
In recent years there has been a significant growth in technologies that modify implant surfaces, reducing healing time and allowing their successful use in areas with low bone density. One of the most widely used techniques is plasma nitration, applied with excellent results in titanium and its alloys, with greater frequency in the manufacture of hip, ankle and shoulder implants. However, its use in dental implants is very limited due to high process temperatures (between 700 C o and 800 C o ), resulting in distortions in these geometrically complex and highly precise components. The aim of the present study is to assess osseointegration and mechanical strength of grade II nitrided titanium samples, through configuration of hollow cathode discharge. Moreover, new formulations are proposed to determine the optimum structural topology of the dental implant under study, in order to perfect its shape, make it efficient, competitive and with high definition. In the nitriding process, the samples were treated at a temperature of 450 C o and pressure of 150 Pa , during 1 hour of treatment. This condition was selected because it obtains the best wettability results in previous studies, where different pressure, temperature and time conditions were systematized. The samples were characterized by X-ray diffraction, scanning electron microscope, roughness, microhardness and wettability. Biomechanical fatigue tests were then conducted. Finally, a formulation using the three dimensional structural topology optimization method was proposed, in conjunction with an hadaptive refinement process. The results showed that plasma nitriding, using the hollow cathode discharge technique, caused changes in the surface texture of test specimens, increases surface roughness, wettability and microhardness when compared to the untreated sample. In the biomechanical fatigue test, the treated implant showed no flaws, after five million cycles, at a maximum fatigue load of 84.46 N. The results of the topological optimization process showed well-defined optimized layouts of the dental implant, with a clear distribution of material and a defined edge
Resumo:
Anhydrous ethanol is used in chemical, pharmaceutical and fuel industries. However, current processes for obtaining it involve high cost, high energy demand and use of toxic and pollutant solvents. This problem occurs due to the formation of an azeotropic mixture of ethanol + water, which does not allow the complete separation by conventional methods such as simple distillation. As an alternative to currently used processes, this study proposes the use of ionic liquids as solvents in extractive distillation. These are organic salts which are liquids at low temperatures (under 373,15 K). They exhibit characteristics such as low volatility (almost zero/ low vapor ), thermal stability and low corrosiveness, which make them interesting for applications such as catalysts and as entrainers. In this work, experimental data for the vapor pressure of pure ethanol and water in the pressure range of 20 to 101 kPa were obtained as well as for vapor-liquid equilibrium (VLE) of the system ethanol + water at atmospheric pressure; and equilibrium data of ethanol + water + 2-HDEAA (2- hydroxydiethanolamine acetate) at strategic points in the diagram. The device used for these experiments was the Fischer ebulliometer, together with density measurements to determine phase compositions. The experimental data were consistent with literature data and presented thermodynamic consistency, thus the methodology was properly validated. The results were favorable, with the increase of ethanol concentration in the vapor phase, but the increase was not shown to be pronounced. The predictive model COSMO-SAC (COnductor-like Screening MOdels Segment Activity Coefficient) proposed by Lin & Sandler (2002) was studied for calculations to predict vapor-liquid equilibrium of systems ethanol + water + ionic liquids at atmospheric pressure. This is an alternative for predicting phase equilibrium, especially for substances of recent interest, such as ionic liquids. This is so because no experimental data nor any parameters of functional groups (as in the UNIFAC method) are needed
Resumo:
Benzene plasma polymer films were bombarded with Ar ions by plasma immersion ion implantation. The treatments were performed using argon pressure of 3 Pa and 70 W of applied power. The substrate holder was polarized with high voltage negative pulses (25 kV, 3 Hz). Exposure time to the immersion plasma, t, was varied from 0 to 9000 s. Optical gap and chemical composition of the samples were determined by ultraviolet-visible and Rutherford backscattering spectroscopies, respectively. Film wettability was investigated by the contact angle between a water drop and the film surface. Nanoindentation technique was employed in the hardness measurements. It was observed growth in carbon and oxygen concentrations while there was decrease in the concentration of H atoms with increasing t. Furthermore, film hardness and wettability increased and the optical gap decreased with t. Interpretation of these results is proposed in terms of the chain crosslinking and unsaturation. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Plasmas generated in de discharges in aromatic compounds have been used for several years in polymerization processes. The chemical kinetics developed in such a plasma environment are extremely complicated. Therefore it is extremely important to set up optical and electrical diagnostics in order to establish the kinetics of the film growth, In this work we studied de plasmas generated ill low-pressure atmospheres of benzene for different values of gas pressure and power coupled to the discharge. The pressure range varied from 0.2 to 1.0 mbar for electric power running from 4 to 25 W, the main chemical species observed within the discharge were CH, H and C. It was observed that the CH relative concentration increases continuously with the power in the range investigated. The electron temperature varied from 0.5 to 2.0 eV with the increase of the power, for a fixed value of gas pressure. The relative dielectric constant of the plasma polymerized benzene was kept around 4.8 from 100 Hz to 10 kHz, presenting a resonance near 25 kHz. This electric behaviour of the film was the same fur different conditions of polymeric film deposition, (C) 1997 Elsevier B.V. S.A.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
It is presented a study conducted on the physical and electrochemical properties of fluorinated a-C:H films deposited onto a commercial aluminum alloy (AA 5052). The coatings were deposited from mixtures of 91% of acetylene and 9% of argon by plasma immersion ion implantation and deposition technique, PIIID. Total gas pressure was 44 Pa and deposition time (t(dep)) was varied from 300 to 1200 s. The depositing plasmas were generated by the application of radiofrequency power (13.56 MHz, 100W) to the upper electrode and high voltage negative pulses (2400 V. 300 Hz) to the sample holder. Fluorine was incorporated in a post-deposition plasma treatment (13.56 MHz, 70W, 13 Pa) generated from sulfur hexafluoride atmosphere. Chemical structure and composition of the films were investigated using infrared reflectance/absorbance spectroscopy and X-ray photoelectron spectroscopy. The corrosion resistance of the layers was determined by electrochemical impedance spectroscopy (EIS) in a 3.5% NaCl solution, at room temperature. Films presented good adhesion to the substrates and are classified as hydrogenated amorphous carbon (a-C:H) with oxygen traces. Fluorine was detected in all the samples after the post-deposition treatment being its proportion independent on the deposition time. Film thickness presented different tendencies with t(dep), revealing the variation of the deposition rate as a function of the deposition time. Such fluorinated a-C:H films improved the corrosion resistance of the aluminum surface. In a general way the corrosion resistance was higher for films prepared with lower deposition times. The variation of sample temperature with t(dep) was found to be decisive for the concentration of defects in the films and, consequently, for the performance of the samples in electrochemical tests. Results are interpreted in terms of the energy delivered to the growing layer by ionic bombardment. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work shows the preparation and characterization of composites obtained by mixing natural rubber (NR) and carbon black (CB) in different percentages aiming suitable mechanical properties, processability and electrical conductivity for future applications as transducers in pressure sensors. The composites NR/CB are characterized through dc conductivity, thermal analysis using differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMA), thermogravimetry (TGA) and stress-strain test. The electrical conductivity changed from 10-9 to 10 Sm-1 depending on the percentage of CB in the composite. Besides, it was found a linear (and reversible) dependence of the conductivity on the applied pressure in the range from 0 to 1.6 MPa for the sample 80/20 (NR/CB wt%).
Resumo:
Plasma processing of the surfaces of biomaterials is interesting because it enables modification of the characteristics of a surface without affecting bulk properties. In addition, the results are strongly influenced by the conditions of the treatment. Therefore, by adjusting the plasma parameters it is possible to tailor the surface properties to best fulfill the requirements of a given application. In this work, polyurethane substrates have been subjected to sulfur hexafluoride glow discharge plasmas. The influences of different SF 6 plasma exposure times and pressures on the adhesion of Staphylococcus aureus and Pseudomonas aeruginosa to the polymer have been investigated. The wettability and surface free energy have been evaluated via contact angle measurements. At low pressure (6.7 Pa) the contact angle decreases with increasing exposure time in the 180 s to 540 s interval, but at higher pressure (13.3 Pa) it increases as a function of the same variable. Bacterial adhesion has been quantified from in vitro experiments by determining the growth of colonies on Petri dishes treated with agar nutrient. It has been observed that the surface properties play an important role in microbe adhesion. For instance, the density of adhered P. aeruginosa decreased as the surface contact angle increased. S. aureus preferred to adhere to hydrophobic surfaces. © 2011 by Begell House, Inc.
Resumo:
Aluminum acetylacetonate has been reported as a precursor for the deposition of alumina films using different approaches. In this work, alumina-containing films were prepared by plasma sputtering this compound, spread directly on the powered lowermost electrode of a reactor, while grounding the substrates mounted on the topmost electrode. Radiofrequency power (13.56 MHz) was used to excite the plasma from argon atmosphere at a working pressure of 11 Pa. The effect of the plasma excitation power on the properties of the resulting films was studied. Film thickness and hardness were measured by profilometry and nanoindentation, respectively. The molecular structure and chemical composition of the layers were analyzed by Fourier transform infrared spectroscopy and energy dispersive spectroscopy. Surface micrographs, obtained by scanning electron microscopy, allowed the determination of the sample morphology. Grazing incidence X-ray diffraction was employed to determine the structure of the films. Amorphous organic layers were deposited with thicknesses of up to 7 μm and hardness of around 1.0 GPa. The films were composed by aluminum, carbon, oxygen and hydrogen, their proportions being strongly dependent on the power used to excite the plasma. A uniform surface was obtained for low-power depositions, but particulates and cracks appeared in the high-power prepared materials. The presence of different proportions of aluminum oxide in the coatings is ascribed to the different activations promoted in the metalorganic molecule once in the plasma phase. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
Pós-graduação em Física - FEG
Resumo:
The removal of aromatic hydrocarbons from diesel has received considerable attention after environmental regulations that require petroleum reï¬ners to raise cetane number and to limit aromatics in diesel fuel in order to improve combustion efficiency and reduce particulate and NOx emissions. An alternative is blending with FischerâTropsch (FT) gas-to-liquid diesel fuel; however, this option may not be economically viable solution in case of extensive blend. Another alternative is to incorporate in the diesel pool a greater fraction of the so-called light cycle oil (LCO). Due to its high aromatics content and its low cetane number (typically between 20 and 30), the incorporation of LCO may have a negative impact on the quality of diesel. Current technologies for LCO improvement are based on hydrogenation to adjust both sulphur and cetane number but while an important fraction of the aromatics present in LCO can be saturated in a deep hydrogenation process, the cetane number may still be lower than the target values specified in diesel legislations, so further upgrading is needed. An interesting technology for improving the cetane number of diesels and maintaining meanwhile high diesel yields is achieved by combining a complete hydrogenation process with a selective ring opening (SRO) reaction of the naphthenic rings. The SRO can be defined as naphthene ring-opening to form compounds with high cetane number, but without any carbon losses. Controlling the interconversion of six- and five- membered rings via an acid-catalyzed ring-contraction step is also of great importance, since selective conversion of six-membered to five-membered naphthene rings greatly inï¬uences ring-opening rates and selectivity. High intrinsic activity may be enhanced by deposition of noble metals on acidic, high surface area supports, because it is possible to arrange close proximity of the metal and acid sites. Moreover, in large-pore supports, the diffusion resistance of liquid reactants into the pores is minimized. In addition to metal centres, the acid sites of support also plays role in aromatics hydrogenation. However, the functions of different kinds of acid sites (Brønsted vs. Lewis acidity), and their optimal concentrations and strengths, remain unclear. In the present study we investigated the upgrading of an aromatic-rich feedstock over different type of metal supported on mesoporous silica-alumina. The selective hydrogenolysis and ring opening of tetrahydronaphthalene (THN or tetralin) was carried out as representative of LCO fractions after deep hydrogenation process. In this regards the aim of this study is to evaluate both the effect of metals and that of the supports characterized by different acid distribution and strength, on conversion and selectivity. For this purpose a series of catalysts were prepared by impregnation. The catalysts were characterized and conversion tests of THN were performed in a lab-scale plant operating in the pressure range from 7.0-5.0 MPa and in the temperature range from 300 to 360°C.
Resumo:
„Untersuchung des Aggregationsverhaltens amphiphiler Diblockcopolymere in überkritischem Kohlendioxid mittels dynamischer Lichtstreuung“ In der vorliegenden Arbeit wurde die Mizellenbildung von Diblockcopolymeren des Typs PS-b-PDMS in überkritischem Kohlendioxid (CO2,SC) mittels dynamischer Lichtstreuung (DLS) charakterisiert. Zu diesem Zweck wurden Mischungen aus den Diblockcopolymeren in CO2,SC mit Styrol als Monomer druckabhängig auf diese Fähigkeit hin untersucht. Eine Mizellenbildung konnte anhand der gemessenen hydrodynamischen Radien Rh gezeigt werden. Um eine Vergleichsmöglichkeit gegenüber den mit Styrol gefüllten Kern-Hüllen-Mizellen zu bekommen, wurde das Diblockcopolymer PS-b-PDMS (9/27) zunächst ohne Styrol auf die Fähigkeit hin untersucht ungefüllte Mizellen zu bilden. Durch Druckvariation konnte ein kritischer Mizellendruck von ca. 46,7 MPa bei einer Temperatur von 338 K im Experiment bestätigt werden, der gefundene Rh liegt bei ca. 34 nm. Dagegen setzt die Aggregation bei einer PS-b-PDMS (9/27)/Styrol/CO2,SC- Mischung bei einem wesentlich niedrigeren Druck ein. Durch Druckvariation zwischen 38 MPa und 45,7 MPa wurde eine Größenänderung der Mizellen beobachtet. Durch zeitabhängige-DLS-Messungen am gleichen System bei einem bestimmten Druck wurde ein langsames Schrumpfen der Mizellen gefunden. Um den Einfluß der Blockgröße der verwendeten Amphiphile auf die Mizellenbildung zu untersuchen wurde das System PS-b-PDMS(6/37)/Styrol/CO2,SC mit Hilfe der DLS im Bereich zwischen 39,4 MPa und 43,1 MPa untersucht. Die Druckänderung zeigte für Rh ein nahezu invariantes Verhalten, daß durch eine verlängerte PDMS-Blocklänge und eine damit verbundene Kompensation der verschiedenen Wechselwirkungskräfte zwischen Mizellenkern, -hülle und CO2,SC erklärt werden kann. Im System PS-b-PDMS(6/16)/Styrol/CO2,SC konnte experimentell mit Hilfe der DLS erst nach einer ver-änderten molaren Zusammensetzung eine Mizellenbildung ab 40 MPa ermöglicht werden. Allerdings ändert sich auch in diesem System der hydrodynamische Radius ebenfalls mit dem Druck. Je nach Druck-, Temperatur- und molarer Zusammensetzung variiert die Tendenz der Systeme, Mizellen zu bilden die eine Emulsion stabilisieren können. Für die in Dispersions-Polymerisationsreaktionen eingesetzten Diblockcopolymere bedeutet dieses Ergebnis differenzierte Applikationsmöglichkeiten. Mit den ermittelten Konzentrationsverhältnissen an Amphiphil und Monomer konnte ein Bereich gefunden werden, in dem die thermodynamischen Bedingungen für die Mizellenbildung einerseits und die Vorraussetzungen für die DLS andererseits gegeben sind.