937 resultados para PREDICTOR
Resumo:
Resumen basado en el de la publicación
Resumo:
Resumen tomado de la publicaci??n
Resumo:
This paper discusses a study to determine whether the neonatal ABR predicts neurodevelopmental delays in low birth weight infants.
Resumo:
Background: Functional magnetic resonance imaging (fMRI) holds promise as a noninvasive means of identifying neural responses that can be used to predict treatment response before beginning a drug trial. Imaging paradigms employing facial expressions as presented stimuli have been shown to activate the amygdala and anterior cingulate cortex (ACC). Here, we sought to determine whether pretreatment amygdala and rostral ACC (rACC) reactivity to facial expressions could predict treatment outcomes in patients with generalized anxiety disorder (GAD).Methods: Fifteen subjects (12 female subjects) with GAD participated in an open-label venlafaxine treatment trial. Functional magnetic resonance imaging responses to facial expressions of emotion collected before subjects began treatment were compared with changes in anxiety following 8 weeks of venlafaxine administration. In addition, the magnitude of fMRI responses of subjects with GAD were compared with that of 15 control subjects (12 female subjects) who did not have GAD and did not receive venlafaxine treatment.Results The magnitude of treatment response was predicted by greater pretreatment reactivity to fearful faces in rACC and lesser reactivity in the amygdala. These individual differences in pretreatment rACC and amygdala reactivity within the GAD group were observed despite the fact that 1) the overall magnitude of pretreatment rACC and amygdala reactivity did not differ between subjects with GAD and control subjects and 2) there was no main effect of treatment on rACC-amygdala reactivity in the GAD group.Conclusions: These findings show that this pattern of rACC-amygdala responsivity could prove useful as a predictor of venlafaxine treatment response in patients with GAD.
Resumo:
We present results on the growth of damage in 29 fatigue tests of human femoral cortical bone from four individuals, aged 53–79. In these tests we examine the interdependency of stress, cycles to failure, rate of creep strain, and rate of modulus loss. The behavior of creep rates has been reported recently for the same donors as an effect of stress and cycles (Cotton, J. R., Zioupos, P., Winwood, K., and Taylor, M., 2003, "Analysis of Creep Strain During Tensile Fatigue of Cortical Bone," J. Biomech. 36, pp. 943–949). In the present paper we first examine how the evolution of damage (drop in modulus per cycle) is associated with the stress level or the "normalized stress" level (stress divided by specimen modulus), and results show the rate of modulus loss fits better as a function of normalized stress. However, we find here that even better correlations can be established between either the cycles to failure or creep rates versus rates of damage than any of these three measures versus normalized stress. The data indicate that damage rates can be excellent predictors of fatigue life and creep strain rates in tensile fatigue of human cortical bone for use in practical problems and computer simulations.
Resumo:
This paper formally derives a new path-based neural branch prediction algorithm (FPP) into blocks of size two for a lower hardware solution while maintaining similar input-output characteristic to the algorithm. The blocked solution, here referred to as B2P algorithm, is obtained using graph theory and retiming methods. Verification approaches were exercised to show that prediction performances obtained from the FPP and B2P algorithms differ within one mis-prediction per thousand instructions using a known framework for branch prediction evaluation. For a chosen FPGA device, circuits generated from the B2P algorithm showed average area savings of over 25% against circuits for the FPP algorithm with similar time performances thus making the proposed blocked predictor superior from a practical viewpoint.
Resumo:
An unaltered rearrangement of the original computation of a neural based predictor at the algorithmic level is introduced as a new organization. Its FPGA implementation generates circuits that are 1.7 faster than a direct implementation of the original algorithm. This faster clock rate allows to implement predictors with longer history lengths using the nearly the same hardware budget.
Resumo:
This paper develops cycle-level FPGA circuits of an organization for a fast path-based neural branch predictor Our results suggest that practical sizes of prediction tables are limited to around 32 KB to 64 KB in current FPGA technology due mainly to FPGA area of logic resources to maintain the tables. However the predictor scales well in terms of prediction speed. Table sizes alone should not be used as the only metric for hardware budget when comparing neural-based predictor to predictors of totally different organizations. This paper also gives early evidence to shift the attention on to the recovery from mis-prediction latency rather than on prediction latency as the most critical factor impacting accuracy of predictions for this class of branch predictors.
Resumo:
We found that a high Lp(a) level was an independent predictor of the development of coronary heart disease in middle-aged men.
Resumo:
BACKGROUND: Strawberry (Fragaria × ananassa Duchesne var. Elsanta) plants were grown in polytunnels covered with three polythene films that transmitted varying levels of ultraviolet (UV) light. Fruit were harvested under near-commercial conditions and quality and yield were measured. During ripening, changes in the colour parameters of individual fruit were monitored, and the accuracy of using surface colour to predict other quality parameters was determined by analysing the correlation between colour and quality parameters within UV treatments. RESULTS: Higher exposure to UV during growth resulted in the fruit becoming darker at harvest and developing surface colour more quickly; fruit were also firmer at harvest, but shelf life was not consistently affected by the UV regime. Surface colour measurements were poorly correlated to firmness, shelf life or total phenolics, anthocyanins and ellagic acid contents. CONCLUSION: Although surface colour of strawberry fruits was affected by the UV regime during growth, and this parameter is an important factor in consumer perception, we concluded that the surface colour at the time of harvest was, contrary to consumer expectations, a poor indicator of firmness, potential shelf life or anthocyanin content. Copyright © 2011 Society of Chemical Industry