996 resultados para POTASSIUM-ION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Programmed cell death (PCD), is a highly regulated and sophisticated cellular mechanism that commits cell to isolated death fate. PCD has been implicated in the pathogenesis of numerous neurodegenerative disorders. Countless molecular events underlie this phenomenon, with each playing a crucial role in death commitment. A precedent event, apoptotic volume decrease (AVD), is ubiquitously observed in various forms of PCD induced by different cellular insults. Under physiological conditions, cells when subjected to osmotic fluctuations will undergo regulatory volume increase/decrease (RVI/RVD) to achieve homeostatic balance with neurons in the brain being additionally protected by the blood-brain-barrier. However, during AVD following apoptotic trigger, cell undergoes anistonic shrinkage that involves the loss of water and ions, particularly monovalent ions e.g. K+, Na+ and Cl-. It is worthwhile to concentrate on the molecular implications underlying the loss of these cellular components which posed to be significant and crucial in the successful propagation of the apoptotic signals. Microarray and real-time PCR analyses demonstrated several ion and water channel genes are regulated upon the onset of lactacystin (a proteosomal inhibitor)-mediated apoptosis. A time course study revealed that gene expressions of water and ion channels are being modulated just prior to apoptosis, some of which are aquaporin 4 and 9, potassium channels and chloride channels. In this review, we shall looked into the molecular protein machineries involved in the execution of AVD in the central nervous system (CNS), and focus on the significance of movements of each cellular component in affecting PCD commitment, thus provide some pharmacological advantages in the global apoptotic cell death.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of uroguanylin (UGN) oil K(+) and H(+) secretion in the renal tubules of the rat kidney was studied using in vivo stationary microperfusion. For the study of K(+) secretion, a tubule was Punctured to inject a column of FDC-green-colored Ringer's solution with 0.5 mmol KCI/L 10(-6)(mol UGN/L, and oil was Used to block fluid flow. K(+) activity and transepithelial potential differences (PD) were measured with double microelectrodes (K(+) ion-selective resin vs. reference) in the distal tubules of the same nephron. During perfusion, K(+) activity rose exponentially, from 0.5 mmol/L to stationary concentration, allowing for the calculation of K(+) secretion J(K)). JK increased from 0.63 +/- 0.06 nmol.cm(-2).s(-1) in the control croup to 0.85 +/- 0.06 in the UGN group (p < 0.01). PD was -51.0 +/- 5.3 mV in the control group and -50.3 +/- 4.98 mV in the UGN group. In the presence of 10(-7) mol iberiotoxin/L, the UGN effect was abolished: JK was 0.37 +/- 0.038 nmol-cm(-2).s(-1) in the absence of, and 0.38 +/- 0.025 in the presence of, UGN. indicating its action oil rnaxi-K channels. In another series of experiments, renal tubule acidification was studied, using similar method: proximal and distal tubules were perfused with solutions containing 25 mmol NaHCO(3)/L. Acidification half-time was increased both in proximal and distal segments and, as a consequence, bicarbonate reabsorption decreased in the presence of UGN (in proximal tubules, from 2.40 +/- 0.26 to 1.56 +/- 0.21 nmol-cm(-2).s(-1)). When the Na(+)/H(+) exchanger was inhibited by 10(-4) mol hexamethylene amiloride (HMA)/L, the control and UGN groups were not significantly different. In the late distal tubule, after HMA, UGN significantly reduced J(HCO3)(-). indicating all effect of UGN oil H(+)-ATPase. These data show that UGN stimulated J(K)(+) by actin, oil maxi-K channels. and decreased J(HCO3)(-) by acting on NHE3 in proximal and H(+)-ATPase in distal tubules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seasonal variability in the major soluble ion composition of atmospheric particulate matter in the principal sugar cane growing region of central São Paulo State indicates that pre-harvest burning of sugar cane plants is an important influence on the regional scale aerosol chemistry. Samples of particulate matter were collected between April 1999 and February 2001 in coarse (> 3.5 mum) and fine (< 3.5 mum) fractions, and analysed for HCOO-, CH3COO-, C2C42-, SO42- . Results indicated that the principal sources of the aerosols investigated NO3-, Cl-, Na+, K+, NH4+, Mg2+ and Ca2+ were local or regional in nature (scale of tens to a few hundreds of km), and that differences between air masses of varying origins were small. Fine particles were typically acidic, containing secondary nitrates, sulphates and organic species. Coarse fraction concentrations were mainly influenced by physical parameters (wind speed, movement of vehicles and surface condition) affecting rates of re-suspension, although secondary nitrate and sulphate were also present in the larger particles.Concentrations of all measured species except sodium and chloride were higher during the burning season. Although concentrations were lower than often found in polluted urban environments, the massive increases during much of the year, due to a single anthropogenic activity (sugar cane burning) are indicative of a very large perturbation of the lower troposphere in the region relative to the natural condition. These aerosols are suspected of promoting respiratory disease. They also represent an important mechanism for the tropospheric transport of species relevant to surface acidification (sulphates, nitrates, ammonium and organic acids) and soil nutrient status (potassium, nitrogen, ammonium, calcium), so their impact on fragile natural ecosystems (following deposition) needs to be considered. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Euonymus japonica Thunb. (euonymus) plants were submitted for 9 months to two irrigation treatments using water from different sources: a control (C) water with electrical conductivity (EC) less than 1.2 dS.m(-1) and reclaimed wastewater (RW) with EC approximate to 4 dS.m(-1). At the end of the experiment, no differences in the total dry weight were observed between treatments, whereas the leaf dry mass increased (to the detriment of the root part in RW plants). Throughout the day, the stem water potential (Psi(stem)) of the RW plants was lower than in C, whereas stomatal conductance (g(S)) was slightly reduced in RW from 0800 HR to 1200 HR, but no significant variation in photosynthesis (P-n) or energy conversion efficiency (F'(v)/F'(m)) in photosystem II was detected through the effect of salinity. Gas exchange and fluorescence showed a tendency to increase after midday in plants treated with RW. The photosynthetic behavior and fluorescence of RW plants may have been related to the nitrogen and chlorophyll content of the leaves, confirming the resistance of the photosynthetic mechanism to salinity in this species in these conditions. The toxic effects produced by high concentrations of boron (B), sodium (Na+) and chloride (Cl-) were offset by the effect of other ions like magnesium (Mg2+), potassium (K+), and phosphorus (P) in plants irrigated with RW, thus improving their physiological status without decreasing their ornamental value.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ether A go-go (Eag) gene encodes the voltage-gated potassium (K+) ion channel Kv10.1, whose function still remains unknown. As dopamine may directly affect K+ channels, we evaluated whether a nigrostriatal dopaminergic lesion induced by the neurotoxin 6-hydroxydopamine (6-OHDA) would alter Eag1-K+ channel expression in the rat basal ganglia and related brain regions. Male Wistar rats received a microinjection of either saline or 6-OHDA (unilaterally) into the medial forebrain bundle. The extent of the dopaminergic lesion induced by 6-OHDA was evaluated by apomorphine-induced rotational behavior and by tyrosine hydroxylase (TH) immunoreactivity. The 6-OHDA microinjection caused a partial or complete lesion of dopaminergic cells, as well as a reduction of Eag1+ cells in a manner proportional to the extent of the lesion. In addition, we observed a decrease in TH immunoreactivity in the ipsilateral striatum. In conclusion, the expression of the Eag1-K+-channel throughout the nigrostriatal pathway in the rat brain, its co-localization with dopaminergic cells and its reduction mirroring the extent of the lesion highlight a physiological circuitry where the functional role of this channel can be investigated. The Eag1-K+ channel expression in dopaminergic cells suggests that these channels are part of the diversified group of ion channels that generate and maintain the electrophysiological activity pattern of dopaminergic midbrain neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The voltage-gated cardiac potassium channel hERG1 (human ether-à-gogo-related gene 1) plays a key role in the repolarization phase of the cardiac action potential (AP). Mutations in its gene, KCNH2, can lead to defects in the biosynthesis and maturation of the channel, resulting in congenital long QT syndrome (LQTS). To identify the molecular mechanisms regulating the density of hERG1 channels at the plasma membrane, we investigated channel ubiquitylation by ubiquitin ligase Nedd4-2, a post-translational regulatory mechanism previously linked to other ion channels. We found that whole-cell hERG1 currents recorded in HEK293 cells were decreased upon neural precursor cell expressed developmentally down-regulated 4-2 (Nedd4-2) co-expression. The amount of hERG1 channels in total HEK293 lysates and at the cell surface, as assessed by Western blot and biotinylation assays, respectively, were concomitantly decreased. Nedd4-2 and hERG1 interact via a PY motif located in the C-terminus of hERG1. Finally, we determined that Nedd4-2 mediates ubiquitylation of hERG1 and that deletion of this motif affects Nedd4-2-dependent regulation. These results suggest that ubiquitylation of the hERG1 protein by Nedd4-2, and its subsequent down-regulation, could represent an important mechanism for modulation of the duration of the human cardiac action potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECT: Disturbed ionic and neurotransmitter homeostasis are now recognized as probably the most important mechanisms contributing to the development of secondary brain swelling after traumatic brain injury (TBI). Evidence obtained in animal models indicates that posttraumatic neuronal excitation by excitatory amino acids leads to an increase in extracellular potassium, probably due to ion channel activation. The purpose of this study was therefore to measure dialysate potassium in severely head injured patients and to correlate these results with measurements of intracranial pressure (ICP), patient outcome, and levels of dialysate glutamate and lactate, and cerebral blood flow (CBF) to determine the role of ischemia in this posttraumatic ion dysfunction. METHODS: Eighty-five patients with severe TBI (Glasgow Coma Scale Score < 8) were treated according to an intensive ICP management-focused protocol. All patients underwent intracerebral microdialyis. Dialysate potassium levels were analyzed using flame photometry, and dialysate glutamate and dialysate lactate levels were measured using high-performance liquid chromatography and an enzyme-linked amperometric method in 72 and 84 patients, respectively. Cerebral blood flow studies (stable xenon computerized tomography scanning) were performed in 59 patients. In approximately 20% of the patients, dialysate potassium values were increased (dialysate potassium > 1.8 mM) for 3 hours or more. A mean amount of dialysate potassium greater than 2 mM throughout the entire monitoring period was associated with ICP above 30 mm Hg and fatal outcome, as were progressively rising levels of dialysate potassium. The presence of dialysate potassium correlated positively with dialysate glutamate (p < 0.0001) and lactate (p < 0.0001) levels. Dialysate potassium was significantly inversely correlated with reduced CBF (p = 0.019). CONCLUSIONS: Dialysate potassium was increased after TBI in 20% of measurements. High levels of dialysate potassium were associated with increased ICP and poor outcome. The simultaneous increase in dialysate potassium, together with dialysate glutamate and lactate, supports the concept that glutamate induces ionic flux and consequently increases ICP, which the authors speculate may be due to astrocytic swelling. Reduced CBF was also significantly correlated with increased levels of dialysate potassium. This may be due to either cell swelling or altered vasoreactivity in cerebral blood vessels caused by higher levels of potassium after trauma. Additional studies in which potassium-sensitive microelectrodes are used are needed to validate these ionic events more clearly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Disturbed ionic and neurotransmitter homeostasis are now recognized to be probably the most important mechanisms contributing to the development of secondary brain swelling after traumatic brian injury (TBI). Evidence obtained from animal models indicates that posttraumatic neuronal excitation via excitatory amino acids leads to an increase in extracellular potassium, probably due to ion channel activation. The purpose of this study was therefore to measure dialysate potassium in severely head injured patients and to correlate these results with intracranial pressure (ICP), outcome, and also with the levels of dialysate glutamate, lactate, and cerebral blood flow (CBF) so as to determine the role of ischemia in this posttraumatic ionic dysfunction. Eighty-five patients with severe TBI (Glasgow Coma Scale score < 8) were treated according to an intensive ICP management-focused protocol. All patients underwent intracerebral microdialyis. Dialysate potassium levels were analyzed by flame photometry, as were dialysate glutamate and dialysate lactate levels, which were measured using high-performance liquid chromatography and an enzyme-linked amperometric method in 72 and 84 patients respectively. Cerebral blood flow studies (stable Xenon--computerized tomography scanning) were performed in 59 patients. In approximately 20% of the patients, potassium values were increased (dialysate potassium > 1.8 mmol). Mean dialysate potassium (> 2 mmol) was associated with ICP above 30 mm Hg and fatal outcome. Dialysate potassium correlated positively with dialysate glutamate (p < 0.0001) and lactate levels (p < 0.0001). Dialysate potassium was significantly inversely correlated with reduced CBF (p = 0.019). Dialysate potassium was increased after TBI in 20% of measurements. High levels of dialysate potassium were associated with increased ICP and poor outcome. The simultaneous increase of potassium, together with dialysate glutamate and lactate, supports the hypothesis that glutamate induces ionic flux and consequently increases ICP due to astrocytic swelling. Reduced CBF was also significantly correlated with increased levels of dialysate potassium. This may be due to either cell swelling or altered potassium reactivity in cerebral blood vessels after trauma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization- and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide-gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we present the development and the characterization of a generic platform for cell culture able to monitor extracellular ionic activities (K+, NH4+) for real-time monitoring of cell-based responses, such as necrosis, apoptosis, or differentiation. The platform for cell culture is equipped with an array of 16 silicon nitride micropipet-based ion-selective microelectrodes with a diameter of either 2 or 6 microm. This array is located at the bottom of a 200-microm-wide and 350-microm-deep microwell where the cells are cultured. The characterization of the ion-selective microelectrode arrays in different standard and physiological solutions is presented. Near-Nernstian slopes were obtained for potassium- (58.6 +/- 0.8 mV/pK, n = 15) and ammonium-selective microelectrodes (59.4 +/- 3.9 mV/pNH4, n = 13). The calibration curves were highly reproducible and showed an average drift of 4.4 +/- 2.3 mV/h (n = 10). Long-term behavior and response after immersion in physiological solutions are also presented. The lifetime of the sensors was found to be extremely long with a high recovery rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Membrane-associated guanylate kinase (MAGUK) proteins are important determinants of ion channel organization in the plasma membrane. In the heart, the MAGUK protein SAP97, encoded by the DLG1 gene, interacts with several ion channels via their PDZ domain-binding motif and regulates their function and localization. OBJECTIVE The purpose of this study was to assess in vivo the role of SAP97 in the heart by generating a genetically modified mouse model in which SAP97 is suppressed exclusively in cardiomyocytes. METHODS SAP97(fl/fl) mice were generated by inserting loxP sequences flanking exons 1-3 of the SAP97 gene. SAP97(fl/fl) mice were crossed with αMHC-Cre mice to generate αMHC-Cre/SAP97(fl/fl) mice, thus resulting in a cardiomyocyte-specific deletion of SAP97. Quantitative reverse transcriptase-polymerase chain reaction, western blots, and immunostaining were performed to measure mRNA and protein expression levels, and ion channel localization. The patch-clamp technique was used to record ion currents and action potentials. Echocardiography and surface ECGs were performed on anesthetized mice. RESULTS Action potential duration was greatly prolonged in αMHC-Cre/SAP97(fl/fl) cardiomyocytes compared to SAP97(fl/fl) controls, but maximal upstroke velocity was unchanged. This was consistent with the decreases observed in IK1, Ito, and IKur potassium currents and the absence of effect on the sodium current INa. Surface ECG revealed an increased corrected QT interval in αMHC-Cre/SAP97(fl/fl) mice. CONCLUSION These data suggest that ablation of SAP97 in the mouse heart mainly alters potassium channel function. Based on the important role of SAP97 in regulating the QT interval, DLG1 may be a susceptibility gene to be investigated in patients with congenital long QT syndrome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Discovery of novel drug targets may lead to improved treatment of trypanosomiasis. We characterize here 2 gene products of Trypanosoma brucei that are essential for the growth of bloodstream form (BSF) parasites, as shown by RNA interference (RNAi)-mediated down-regulation of the individual mRNAs. The primary sequences of the 2 proteins--protein encoded by gene Tb927.1.4450 (TbK1) and protein encoded by gene Tb927.9.4820 (TbK2)--indicate that both belong to the family of putative, Ca(2+)-activated potassium channels. The proteins were expressed in Xenopus laevis oocytes and their functions investigated by use of electrophysiological techniques. Only combined expression of TbK1 and TbK2 results in the formation of sizeable currents, indicating that these proteins probably assemble into a heteromeric ion channel. The current mediated by this channel shows little time and voltage dependence and displays a permeability ratio of K(+)/Na(+) of >20. The known potassium channel blocker barium inhibits this channel with a half-maximal inhibitory concentration (IC50) of 98 ± 15 μM. The membrane potential of trypanosomes was measured with a fluorescent dye. Individual RNAi-mediated down-regulation of TbK1 or TbK2 eliminates a potassium conductance in the plasma membrane of BSF. Thus, this heteromeric potassium channel is involved in the modulation of the plasma membrane potential and represents a novel drug target in T. brucei.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The movement of ions across specific channels embedded on the membrane of individual cardiomyocytes is crucial for the generation and propagation of the cardiac electric impulse. Emerging evidence over the past 20 years strongly suggests that the normal electric function of the heart is the result of dynamic interactions of membrane ion channels working in an orchestrated fashion as part of complex molecular networks. Such networks work together with exquisite temporal precision to generate each action potential and contraction. Macromolecular complexes play crucial roles in transcription, translation, oligomerization, trafficking, membrane retention, glycosylation, post-translational modification, turnover, function, and degradation of all cardiac ion channels known to date. In addition, the accurate timing of each cardiac beat and contraction demands, a comparable precision on the assembly and organizations of sodium, calcium, and potassium channel complexes within specific subcellular microdomains, where physical proximity allows for prompt and efficient interaction. This review article, part of the Compendium on Sudden Cardiac Death, discusses the major issues related to the role of ion channel macromolecular assemblies in normal cardiac electric function and the mechanisms of arrhythmias leading to sudden cardiac death. It provides an idea of how these issues are being addressed in the laboratory and in the clinic, which important questions remain unanswered, and what future research will be needed to improve knowledge and advance therapy.