154 resultados para POTA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents potential barriers to integrate the squirrel cage induction generator (SCIG) and doubly fed induction generator (DFIG) type wind turbine in distribution networks. The analysis is carried out over a 16 bus distribution test system. Both static and dynamic analyses are performed to see the impact of two different generators on the distribution system. The simulation results show that both SCIG and DFIG type wind turbines have significant impact on the static voltage stability, power loss, and dynamic behavior of the system, which should be taken into account to improve systems performance before integrating wind generation in existing distribution networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a novel excitation control design to improve the voltage profile of power distribution networks with distributed generation and induction motor loads. The system is linearised by perturbation technique. Controller is designed using the linear-quadratic-Gaussian (LQG) controller synthesis method. The LQG controller is addressed with norm-bounded uncertainty. The approach considered in this paper is to find the smallest upper bound on the H∞ norm of the uncertain system and to design an optimal controller based on this bound. The design method requires the solution of a linear matrix inequality. The performance of the controller is tested on a benchmark power distribution system. Simulation results show that the proposed controller provides impressive oscillation damping compared to the conventional excitation controller.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the application of FACTS devices for the enhancement of dynamic voltage stability in distribution networks with distributed wind generation. The analysis is carried over a test distribution system representative of the Kumamoto area in Japan. The detailed mathematical modelling of the system is also presented. Firstly, this paper provides simulation results showing the effects of higher and lower penetration of distributed wind generation on the voltage dynamics in a faulted system. Then, a distribution static synchronous compensator (D-STATCOM) is used to improve the voltage profile of the system. This analysis shows that D-STATCOM has significant performance to improve the voltage dynamics of distribution system compared to shunt capacitor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Power loss of a distribution system can be reduced significantly by using optimum size and location of distributed generation (DG). Proper allocation of DG with appropriate size maximizes overall system efficiency. Moreover it improves the reliability and voltage profile of the distribution system. In this paper, IEEE 123 node test feeder has been considered to determine the optimum size and location of a synchronous machine based DG for loss reduction of the system. This paper also investigates the steady-state and dynamic voltage profile of that three phase unbalance distribution network in presence of DG with optimum size. This analysis shows that optimum size of DG at proper location minimizes the power loss as well as improves the dynamic voltage profile of the distribution system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, charging effect of dynamic Plug in Hybrid Electric Vehicle (PHEV) is presented in a renewable energy based electricity distribution system. For planning and designing a distribution system, PHEVs are one of the most important factor as it is going to be a spinning reserve of energy, and also a major load for distribution network. A dynamic load model of PHEVs is introduced here based on third order battery model. To determine the system adequacy, it is necessary to do a micro level analysis to know the PHEVs load impact on grid. Scope of such analysis will cover the performance of wind and solar generation with dynamic PHEVs load, as well as the stability analysis of the power grid to demonstrate that it is important to consider the dynamics of PHEVs load in a renewable energy based distribution network.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the impact of different types of load models in distribution network with distributed wind generation. The analysis is carried out for a test distribution system representative of the Kumamoto area in Japan. Firstly, this paper provides static analysis showing the impact of static load on distribution system. Then, it investigates the effects of static as well as composite load based on the load composition of IEEE task force report [1] through an accurate time-domain analysis. The analysis shows that modeling of loads has a significant impact on the voltage dynamics of the distribution system with distributed generation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates the oscillatory behavior of power distribution systems in the presence of distributed generation. The analysis is carried out over a distribution test system with two doubly fed induction type wind generators and different types of induction motor loads. The system is linearized by the perturbation method. Eigenvalues are calculated to see the modal interaction within the system. The study indicates that interactions between closely placed converter controllers and induction motor loads significantly influence the damping of the oscillatory modes of the system. The critical modes have a frequency of oscillation between the electromechanical and subsynchronous oscillations of power systems. Time-domain simulations are carried out to verify the validity of the modal analysis and to provide a physical feel for the types of oscillations that occur in distribution systems. Finally, significant parameters of the system that affect the damping and frequency of the oscillation are identified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, simulation results showing the effect of lower and higher penetration of distributed wind generation on the voltage profile in distribution systems have been presented. The analysis is carried out over two distribution test systems. The detailed mathematical modeling of the system is also presented. It also investigates the small-signal stability of distribution systems using eigenvalue approach. The analyses show that voltage variation problems occur in different nodes of the distribution networks with an increase of penetration level. However, proper selection of dispersion level can improve the voltage profile of the distribution systems

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditional distribution networks were not originally designed to accommodate power generation facilities. The installation of distributed generation (DG) units with significatn capacity in these passive networks can cause reverse power flows which will result in some conflicts with the operation of the existing protection system. In this context, utilities around the world have started establishing requirements to ensure safe and reliable interconnection of generators in low- and medium-voltage networks. Grid interconnection is presently one of the most important issues involving DG. This paper presents a critical review of the requirements adopted by distribution companies in selected countries such as the USA, the UK, germany and Australia to facilitate the connection of DG. Critical issues such as voltage regulation, islanding operation, dynamic interactions among DG and loads are discussed to identify a few points where attention is still needed to improve the reliability of distribution systems

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a novel control design for D-STATCOM to ensure grid code-compatible performance of distributed wind generators. The approach considered in this paper is to find the smallest upper bound on the H norm of the uncertain system and to design an optimal linear quadratic Gaussian (LQG) controller based on this bound. The change in the model due to variations of induction motor (IM) load compositions in the composite load is considered as an uncertain term in the design algorithm. The performance of the designed controller is demonstrated on a distribution test system representative of the Kumamoto area in Japan. It is found that the proposed controller enhances voltage stability of the distribution system under varying operating conditions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper analyzes the static voltage stability of distribution networks with photovoltaic (PV) generators under contingencies. The analysis is carried out on a widely used 16-bus test system. The paper treats the Q-V characteristics of the distribution grid for various PV penetration levels. Simulation results show that a higher penetration of PV increases the static coltage stability of the system. However, the tripping of multiple PV generators due to external disturbances, overloading and loss of distribution lines reduces the voltage stability margin of the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a decentralised controller design for doubly-fed induction generators (DFIGs) to enhance dynamic performance of distribution networks. The change in the output power due to the variable nature of wind is considered as an uncertain term in the design algorithm. In addition, the interconnection effect of the other subsystems are considered in the design process. The H norm of the uncertain system is found out and simultaneous output-feedback linear controllers are designed based controller is verified on a 16 bus distribution test system for severe disturbances. Simulation results indicate that the designed controller is robust against uncertainties in operating conditions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wind power generation is growing rapidly. However, maintaining the wind turbine connection to grid is a real challenge. Recent grid codes require wind turbines to maintain connected to the grid even during fault conditions which increases concerns about its sensitivity to external faults. So, researchers have given attention to investigating the impact of various external faults, and grid disturbances such as voltage sag and short circuit faults, on the fault ride through (FRT) capability of the doubly fed induction generator (DFIG). However, no attention has been given to the impact of internal faults on the dynamic performance of the machine when the fault occurs within the voltage source converters (VSCs) that interface the DFIG with the grid. This paper investigates the impact of the rotor side converter (RSC) IGBT flashover fault on the common coupling (PCC) reactive power and the FRT is proposed. The DFIG compliance with numerous and recently released FRT grid codes under the studied fault, with and without the STATCOM are examined and compared. Furthermore, the capability of a proposed controller to bring the voltage profile at the point of PCC to the nominal steady-state level; maintain the unity power factor operation; and, maintain the connection of the wind turbine to the grid are examined

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposed a new linear zero dynamic controller (LZDC) for

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes an optimal linear quadratic Gaussian (LQG) controller for D-STATCOM to improve the dynamic performance of distribution networks with photovoltaic generators. The controller is designed based on the H∞ norm of the uncertain system. The change in system model due to the variation of load compositions in the composite load is considered as an uncertain term in the design algorithm. The performance of the designed controller is demonstrated on a widely used test system. Simulation results indicate that the proposed controller can be a potential solution for improving the voltage stability of distribution networks.