939 resultados para PORTAL-HYPERTENSION
Resumo:
Background: Chronic kidney disease (CKD) and hypertension are global public health problems associated with considerable morbidity, premature mortality and attendant healthcare costs. Previous studies have highlighted that non-invasive examination of the retinal microcirculation can detect microvascular pathology that is associated with systemic disorders of the circulatory system such as hypertension. We examined the associations between retinal vessel caliber (RVC) and fractal dimension (DF), with both hypertension and CKD in elderly Irish nuns.
Methods: Data from 1233 participants in the cross-sectional observational Irish Nun Eye Study (INES) were assessed from digital photographs with a standardized protocol using computer-assisted software. Multivariate regression analyses were used to assess associations with hypertension and CKD, with adjustment for age, body mass index (BMI), refraction, fellow eye RVC, smoking, alcohol consumption, ischemic heart disease (IHD), cerebrovascular accident (CVA), diabetes and medication use.
Results: In total, 1122 (91%) participants (mean age: 76.3 [range: 56-100] years) had gradable retinal images of sufficient quality for blood vessel assessment. Hypertension was significantly associated with a narrower central retinal arteriolar equivalent (CRAE) in a fully adjusted analysis (P = 0.002; effect size= -2.16 μm; 95% confidence intervals [CI]: -3.51, -0.81 μm). No significant associations between other retinal vascular parameters and hypertension or between any retinal vascular parameters and CKD were found.
Conclusions: Individuals with hypertension have significantly narrower retinal arterioles which may afford an earlier opportunity for tailored prevention and treatment options to optimize the structure and function of the microvasculature, providing additional clinical utility. No significant associations between retinal vascular parameters and CKD were detected.
Resumo:
Background: Obestatin is a gastrointestinal peptide with established metabolic actions and emerging vascular effects which involve activation of NO signalling. The aim of this study was to investigate effects of a recently-characterised stable analogue, PEGylated obestatin (PEG-OB), in the setting of diet-induced obesity which is associated with both metabolic and vascular dysfunction. Methods: Male Sprague Dawley rats (6 weeks; n=8) were maintained on standard (SD) or high fat (HF) diet (60% fat) for 8 weeks with once-daily injection of either PEG-OB (50nmol/kg/day) or saline from 2 weeks. Results: HF feeding for 8 weeks resulted in marked body weight gain which was not affected by chronic PEG-OB treatment (HF saline, 175.0±12.2; HF PEG-OB, 190.4±6.4g; P=NS). Similarly, blood glucose, as indicated by HbA1c (HF saline, 6.30±0.15; HF PEG-OB, 6.13±0.36%; P=NS) and insulin tolerance (HF saline, 105.2±52.5; HF PEG-OB, 90.3±45.4mmol/L.min; P=NS), were unaltered by PEG-OB. Despite the apparent lack of metabolic effects, chronic PEG-OB treatment markedly attenuated development of HF-induced hypertension (HF saline, 146.5±4.9mmHg; HF PEG-OB, 123.0±9.7mmHg; P<0.01), assessed by tail-cuff plethysmography. Furthermore, organ bath pharmacology in isolated aortic rings, indicated that HF diet-induced endothelial dysfunction was completely prevented by PEG-OB (acetylcholine, EC50: SD saline, 335±113; HF saline, 758±164; HF PEG-OB, 277±85nmol/L; P<0.05). However, contraction to phenylephrine and relaxation to the NO donor, sodium nitroprusside, were unaltered between groups. Conclusions: PEG-OB exerts beneficial effects on hypertension and endothelial function in diabetes independently of metabolic actions suggesting that obestatin signalling may represent a novel therapeutic target to reduce the risk of associated cardiovascular complications.
Resumo:
We evaluated the effectiveness of diode laser trans-scleral cyclophotocoagulation (TSCPC) on intraocular pressure (IOP) in nine patients having raised IOP following use of silicone oil (SO) for retinal detachment (RD) surgery in a retrospective observational case series. Diode laser TSCPC was applied at a power setting of 1.75 to 2.5 watts, for two sec with a maximum of 30 applications. The patients were followed up for 40 to 312 weeks. The mean pre-laser IOP was 32.06 mm Hg (SD 7.32). The mean post-laser IOP at one month, three months and six months was 17.89 mm Hg (SD 8.23), 21.89 mm Hg (SD 8.16) and 21.67 mm Hg (SD 7.55) respectively. The final IOP (at the last follow-up) was 19.56 mm Hg (SD 7.85) (P=0.021). Seven of them had undergone SO removal. In our observation, effectiveness of TSCPC in long-term control of SO-induced ocular hypertension was limited as compared to short-term control of IOP.
Resumo:
Far from simply lining the inner surface of blood vessels, the cellular monolayer that comprises the endothelium is a highly active organ that regulates vascular tone. In health, the endothelium maintains the balance between opposing dilator and constrictor influences, while in disease, it is the common ground on which cardiovascular risk factors act to initiate the atherosclerotic process. As such, it is the site at which cardiovascular disease begins and consequently acts as a barometer of an individual's likely future cardiovascular health. The vascular endothelium is a very active organ responsible for the regulation of vascular tone through the effects of locally synthesized mediators, predominantly nitric oxide (NO), endothelial NO synthase (eNOS), and superoxide. NO is abundantly evident in normally functioning vasculature where it acts as a vasodilator, inhibits inflammation, and has an antiaggregant effect on platelets. Its depletion is both a sign and cause of endothelial dysfunction resulting from reduced activity of eNOS and amplified production of nicotinamide adenine dinucleotide oxidase, which, in turn, results in raised levels of reactive oxygen species. This cascade is the basis for reduced vascular compliance through an imbalanced regulation of tone with a predominance of vasoconstrictive elements. Further, structural changes in the microvasculature are a critical early step in the loss of normal function. This microvascular dysfunction is known to be highly predictive of future macrovascular events and is consequently a very attractive target for intervention in the hypertensive population in order to prevent cardiovascular events.
Resumo:
OBJECTIVE: To assess the efficiency of alternative monitoring services for people with ocular hypertension (OHT), a glaucoma risk factor.
DESIGN: Discrete event simulation model comparing five alternative care pathways: treatment at OHT diagnosis with minimal monitoring; biennial monitoring (primary and secondary care) with treatment if baseline predicted 5-year glaucoma risk is ≥6%; monitoring and treatment aligned to National Institute for Health and Care Excellence (NICE) glaucoma guidance (conservative and intensive).
SETTING: UK health services perspective.
PARTICIPANTS: Simulated cohort of 10 000 adults with OHT (mean intraocular pressure (IOP) 24.9 mm Hg (SD 2.4).
MAIN OUTCOME MEASURES: Costs, glaucoma detected, quality-adjusted life years (QALYs).
RESULTS: Treating at diagnosis was the least costly and least effective in avoiding glaucoma and progression. Intensive monitoring following NICE guidance was the most costly and effective. However, considering a wider cost-utility perspective, biennial monitoring was less costly and provided more QALYs than NICE pathways, but was unlikely to be cost-effective compared with treating at diagnosis (£86 717 per additional QALY gained). The findings were robust to risk thresholds for initiating monitoring but were sensitive to treatment threshold, National Health Service costs and treatment adherence.
CONCLUSIONS: For confirmed OHT, glaucoma monitoring more frequently than every 2 years is unlikely to be efficient. Primary treatment and minimal monitoring (assessing treatment responsiveness (IOP)) could be considered; however, further data to refine glaucoma risk prediction models and value patient preferences for treatment are needed. Consideration to innovative and affordable service redesign focused on treatment responsiveness rather than more glaucoma testing is recommended.
Resumo:
Lung recruitment maneuvers (RMs), used to reopen atelectatic lung units and to improve oxygenation during mechanical ventilation, may result in hemodynamic impairment. We hypothesize that pulmonary arterial hypertension aggravates the consequences of RMs in the splanchnic circulation. Twelve anesthetized pigs underwent laparotomy and prolonged postoperative ventilation. Systemic, regional, and organ blood flows were monitored. After 6 h (= baseline), a recruitment maneuver was performed with sustained inflation of the lungs. Thereafter, the pigs were randomly assigned to group C (control, n = 6) or group E with endotoxin-induced pulmonary arterial hypertension (n = 6). Endotoxemia resulted in a normotensive and hyperdynamic state and a deterioration of the oxygenation index by 33%. The RM was then repeated in both groups. Pulmonary artery pressure increased during lipopolysaccharide infusion from 17 ± 2 mmHg (mean ± SD) to 31 ± 10 mmHg and remained unchanged in controls (P < 0.05). During endotoxemia, RM decreased aortic pulse pressure from 37 ± 14 mmHg to 27 ± 13 mmHg (mean ± SD, P = 0.024). The blood flows of the renal artery, hepatic artery, celiac trunk, superior mesenteric artery, and portal vein decreased to 71% ± 21%, 69% ± 20%, 76% ± 16%, 79% ± 18%, and 81% ± 12%, respectively, of baseline flows before RM (P < 0.05 all). Organ perfusion of kidney cortex, kidney medulla, liver, and jejunal mucosa in group E decreased to 65% ± 19%, 77% ± 13%, 66% ± 26%, and 71% ± 12%, respectively, of baseline flows (P < 0.05 all). The corresponding recovery to at least 90% of baseline regional blood flow and organ perfusion lasted 1 to 5 min. Importantly, the decreases in regional blood flows and organ perfusion and the time to recovery of these flows did not differ from the controls. In conclusion, lipopolysaccharide-induced pulmonary arterial hypertension does not aggravate the RM-induced significant but short-lasting decreases in systemic, regional, and organ blood flows.
Resumo:
The aim of this study was to evaluate microdialysis of the rectus abdominis muscle (RAM) for early detection of subclinical organ dysfunction in a porcine model of critical intra-abdominal hypertension (IAH). Microdialysis catheters for analyses of lactate, pyruvate, and glycerol levels were placed in cervical muscles (control), gastric and jejunal wall, liver, kidney, and RAM of 30 anesthetized mechanically ventilated pigs. Catheters for venous lactate and interleukin 6 samples were placed in the jugular, portal, and femoral vein. Intra-abdominal pressure (IAP) was increased to 20 mmHg (IAH20 group, n = 10) and 30 mmHg (IAH30, n = 10) for 6 h by controlled CO2 insufflation, whereas sham animals (n = 10) exhibited a physiological IAP. In contrast to 20 mmHg, an IAH of 30 mmHg induced pathophysiological alterations consistent with an abdominal compartment syndrome. Microdialysis showed significant increase in the lactate/pyruvate ratio in the RAM of the IAH20 group after 6 h. In the IAH30 group, the strongest increase in lactate/pyruvate ratio was detected in the RAM and less pronounced in the liver and gastric wall. Glycerol increased in the RAM only. After 6 h, there was a significant increase in venous interleukin 6 of the IAH30 group compared with baseline. Venous lactate was increased compared with baseline and shams in the femoral vein of the IAH30 group only. Intra-abdominal pressure-induced ischemic metabolic changes are detected more rapidly and pronounced by microdialysis of the RAM when compared with intra-abdominal organs. Thus, the RAM represents an important and easily accessible site for the early detection of subclinical organ dysfunction during critical IAH.