939 resultados para PORE-SIZE DISTRIBUTION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of volume shape factor on crystal size distribution (CSD) is usually ignored to simplify the analysis of population balance equation. In the present work, the CSD of fragments generated from a mechanically stirred crystallizer as the result of attrition mechanism has been reported when the volume shape factor conforms to normal distribution. The physical model of GAHN and MERSMANN which relates the attrition resistance of a crystalline substances to its mechanical properties has been employed. The simulation of fragment size distribution was performed by Monte Carlo (MC) technique. The results are compared with those reported by GAHN and MERSMANN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an updated cumulative size distribution (CSD) for Jupiter Family comet (JFC) nuclei, including a rigorous assessment of the uncertainty on the slope of the CSD. The CSD is expressed as a power law, N(>rN) ?r-qN, where rN is the radius of the nuclei and q is the slope. We include a large number of optical observations published by us and others since the comprehensive review in the Comets II book, and make use of an improved fitting method. We assess the uncertainty on the CSD due to all of the unknowns and uncertainties involved (photometric uncertainty, assumed phase function, albedo and shape of the nucleus) by means of Monte Carlo simulations. In order to do this we also briefly review the current measurements of these parameters for JFCs. Our final CSD has a slope q= 1.92 ± 0.20 for nuclei with radius rN= 1.25 km.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A critical load x(c) is introduced into the fiber-bundle model with local load-sharing. The critical load is defined as the average load per fiber that causes the final complete failure. It is shown that x(c) --> 0 when the size of the system N --> infinity. A power law for the burst-size distribution, D(DELTA) is-proportional-to DELTA(-xi) is approximately correct. The exponent xi is not universal, since it depends on the strength distribution as well as the size of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present results from SEPPCoN, an on-going Survey of the Ensemble Physical Properties of Cometary Nuclei. In this report we discuss mid-infrared measurements of the thermal emission from 89 nuclei of Jupiter-family comets (JFCs). All data were obtained in 2006 and 2007 using imaging capabilities of the Spitzer Space Telescope. The comets were typically 4-5 AU from the Sun when observed and most showed only a point-source with little or no extended emission from dust. For those comets showing dust, we used image processing to photometrically extract the nuclei. For all 89 comets, we present new effective radii, and for 57 comets we present beaming parameters. Thus our survey provides the largest compilation of radiometrically-derived physical properties of nuclei to date. We have six main conclusions: (a) The average beaming parameter of the JFC population is 1.03 ± 0.11, consistent with unity; coupled with the large distance of the nuclei from the Sun, this indicates that most nuclei have Tempel 1-like thermal inertia. Only two of the 57 nuclei had outlying values (in a statistical sense) of infrared beaming. (b) The known JFC population is not complete even at 3 km radius, and even for comets that approach to ˜2 AU from the Sun and so ought to be more discoverable. Several recently-discovered comets in our survey have small perihelia and large (above ˜2 km) radii. (c) With our radii, we derive an independent estimate of the JFC nuclear cumulative size distribution (CSD), and we find that it has a power-law slope of around -1.9, with the exact value depending on the bounds in radius. (d) This power-law is close to that derived by others from visible-wavelength observations that assume a fixed geometric albedo, suggesting that there is no strong dependence of geometric albedo with radius. (e) The observed CSD shows a hint of structure with an excess of comets with radii 3-6 km. (f) Our CSD is consistent with the idea that the intrinsic size distribution of the JFC population is not a simple power-law and lacks many sub-kilometer objects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research over the past two decades on the Holocene sediments from the tide dominated west side of the lower Ganges delta has focussed on constraining the sedimentary environment through grain size distributions (GSD). GSD has traditionally been assessed through the use of probability density function (PDF) methods (e.g. log-normal, log skew-Laplace functions), but these approaches do not acknowledge the compositional nature of the data, which may compromise outcomes in lithofacies interpretations. The use of PDF approaches in GSD analysis poses a series of challenges for the development of lithofacies models, such as equifinal distribution coefficients and obscuring the empirical data variability. In this study a methodological framework for characterising GSD is presented through compositional data analysis (CODA) plus a multivariate statistical framework. This provides a statistically robust analysis of the fine tidal estuary sediments from the West Bengal Sundarbans, relative to alternative PDF approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Not Available

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examines the firm size distribution of US banks and credit unions. A truncated lognormal distribution describes the size distribution, measured using assets data, of a large population of small, community-based commercial banks. The size distribution of a smaller but increasingly dominant cohort of large banks, which operate a high-volume low-cost retail banking model, exhibits power-law behaviour. There is a progressive increase in skewness over time, and Zipf’s Law is rejected as a descriptor of the size distribution in the upper tail. By contrast, the asset size distribution of the population of credit unions conforms closely to the lognormal distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Department of Physics, Cochin University of Science and Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One-pot acetalizations of cyclohexanone. acetophenone and benzophenone were carried out using methanol over H-montmorillonite clay (a mesoporous material). silica, alumina, and different zeolites such as HFAU-Y.HBeta, H-ZSM-5, and H-mordenite. In all the cases a single product-the corresponding dimethylacetal-was obtained in high yields. Hemiacetal formation was not observed with any catalyst. A comparison of catalytic activity indicated that montmorillonite K-10 is the most active catalyst for the reaction. As evidenced by the reaction time studies, the catalyst decay is greater over the zeolite catalyst than over the clay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SMPS and DMS500 analysers were used to measure particulate size distributions in the exhaust of a fully annular aero gas turbine engine at two operating conditions to compare and analyse sources of discrepancy. A number of different dilution ratio values were utilised for the comparative analysis, and a Dekati hot diluter operating at a temperature of 623°K was also utilised to remove volatile PM prior to measurements being made. Additional work focused on observing the effect of varying the sample line temperatures to ascertain the impact. Explanations are offered for most of the trends observed, although a new, repeatable event identified in the range from 417°K to 423°K – where there was a three order of magnitude increase in the nucleation mode of the sample – requires further study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particle size distribution (psd) is one of the most important features of the soil because it affects many of its other properties, and it determines how soil should be managed. To understand the properties of chalk soil, psd analyses should be based on the original material (including carbonates), and not just the acid-resistant fraction. Laser-based methods rather than traditional sedimentation methods are being used increasingly to determine particle size to reduce the cost of analysis. We give an overview of both approaches and the problems associated with them for analyzing the psd of chalk soil. In particular, we show that it is not appropriate to use the widely adopted 8 pm boundary between the clay and silt size fractions for samples determined by laser to estimate proportions of these size fractions that are equivalent to those based on sedimentation. We present data from field and national-scale surveys of soil derived from chalk in England. Results from both types of survey showed that laser methods tend to over-estimate the clay-size fraction compared to sedimentation for the 8 mu m clay/silt boundary, and we suggest reasons for this. For soil derived from chalk, either the sedimentation methods need to be modified or it would be more appropriate to use a 4 pm threshold as an interim solution for laser methods. Correlations between the proportions of sand- and clay-sized fractions, and other properties such as organic matter and volumetric water content, were the opposite of what one would expect for soil dominated by silicate minerals. For water content, this appeared to be due to the predominance of porous, chalk fragments in the sand-sized fraction rather than quartz grains, and the abundance of fine (<2 mu m) calcite crystals rather than phyllosilicates in the clay-sized fraction. This was confirmed by scanning electron microscope (SEM) analyses. "Of all the rocks with which 1 am acquainted, there is none whose formation seems to tax the ingenuity of theorists so severely, as the chalk, in whatever respect we may think fit to consider it". Thomas Allan, FRS Edinburgh 1823, Transactions of the Royal Society of Edinburgh. (C) 2009 Natural Environment Research Council (NERC) Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particulate matter generated during the cooking process has been identified as one of the major problems of indoor air quality and indoor environmental health. Reliable assessment of exposure to cooking-generated particles requires accurate information of emission characteristics especially the size distribution. This study characterizes the volume/mass-based size distribution of the fume particles at the oil-heating stage for the typical Chinese-style cooking in a laboratory kitchen. A laser-diffraction size analyzer is applied to measure the volume frequency of fume particles ranged from 0.1 to 10 μm, which contribute to most mass proportion in PM2.5 and PM10. Measurements show that particle emissions have little dependence on the types of vegetable oil used but have a close relationship with the heating temperature. It is found that volume frequency of fume particles in the range of 1.0–4.0 μm accounts for nearly 100% of PM0.1–10 with the mode diameter 2.7 μm, median diameter 2.6 μm, Sauter mean diameter 3.0 μm, DeBroukere mean diameter 3.2 μm, and distribution span 0.48. Such information on emission characteristics obtained in this study can be possibly used to improve the assessment of indoor air quality due to PM0.1–10 in the kitchen and residential flat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Eyjafjallajökull volcano in Iceland emitted a cloud of ash into the atmosphere during April and May 2010. Over the UK the ash cloud was observed by the FAAM BAe-146 Atmospheric Research Aircraft which was equipped with in-situ probes measuring the concentration of volcanic ash carried by particles of varying sizes. The UK Met Office Numerical Atmospheric-dispersion Modelling Environment (NAME) has been used to simulate the evolution of the ash cloud emitted by the Eyjafjallajökull volcano during the period 4–18 May 2010. In the NAME simulations the processes controlling the evolution of the concentration and particle size distribution include sedimentation and deposition of particles, horizontal dispersion and vertical wind shear. For travel times between 24 and 72 h, a 1/t relationship describes the evolution of the concentration at the centre of the ash cloud and the particle size distribution remains fairly constant. Although NAME does not represent the effects of microphysical processes, it can capture the observed decrease in concentration with travel time in this period. This suggests that, for this eruption, microphysical processes play a small role in determining the evolution of the distal ash cloud. Quantitative comparison with observations shows that NAME can simulate the observed column-integrated mass if around 4% of the total emitted mass is assumed to be transported as far as the UK by small particles (< 30 μm diameter). NAME can also simulate the observed particle size distribution if a distal particle size distribution that contains a large fraction of < 10 μm diameter particles is used, consistent with the idea that phraetomagmatic volcanoes, such as Eyjafjallajökull, emit very fine particles.