996 resultados para POPULUS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Forestry and other activities are increasing in the boreal mixedwood of Alberta, with a concomitant decrease in older forest. The Barred Owl (Strix varia) is an old-growth indicator species in some jurisdictions in North America. Hence, we radio-tagged Barred Owls in boreal mixedwood in Alberta to determine whether harvesting influenced habitat selection. We used three spatial scales: nest sites, i.e., nest tree and adjacent area of 11.7 m radius around nests, nesting territory of 1000 m radius around nests, and home range locations within 2000 m radius of the home range center. Barred Owls nested primarily in balsam poplar (Populus balsamifera) snags > 34 cm dbh and nest trees were surrounded by large, > 34 cm dbh, balsam poplar trees and snags. Nesting territories contained a variety of habitats including young < 80-yr-old, deciduous-dominated stands, old deciduous and coniferous-dominated stands, treed bogs, and recent clear-cuts. However, when compared to available habitat in the study area, they were more likely to contain old conifer-dominated stands and recent cutblocks. We assumed this is because all of the recent harvest occurred in old stands, habitat preferred by the owls. When compared with random sites, locations used for foraging and roosting at the home range scale were more likely to be in young deciduous-dominated stands, old conifer-dominated stands and cutblocks > 30 yr old, and less likely to occur in old deciduous-dominated stands and recent cutblocks. Hence, although recent clearcuts occurred in territories, birds avoided these microhabitats during foraging. To meet the breeding requirements of Barred Owls in managed forests, 10–20 ha patches of old deciduous and mixedwood forest containing large Populus snags or trees should be maintained. In our study area, nest trees had a minimum dbh of 34 cm. Although cut areas were incorporated into home ranges, the amount logged was low, i.e., 7%, in our area. Hence more research is required to determine harvest levels tolerated by owls over the long term.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large secondary-nesting birds such as ducks rely on appropriate cavities for breeding. The main objective of this study was to assess the availability of large cavities and the potential of a managed boreal coniferous landscape to provide nesting trees within the breeding area of the eastern population of Barrow’s Goldeneye (Bucephala islandica), a cavity-nesting species at risk in Canada. Woodpecker surveys were conducted in both conifer and mixed-wood landscapes, and cavities were sought in line transects distributed in unharvested and linear remnant stands of balsam fir (Abies balsamea) and black spruce (Picea mariana) as well as in cutblocks. No Pileated Woodpeckers (Dryocopus pileatus) were detected in the breeding area of Barrow’s Goldeneye, but the species was present in the nearby lowland area in which trembling aspen (Populus tremuloides) is abundant. Only 10 trees (0.2% of those sampled) supported cavities considered suitable for Barrow’s Goldeneye in terms of dimensions and canopy openness. Most of the suitable cavities found during this study were nonexcavated apical (chimney) cavities in relatively short snags that showed advanced states of decay. A diameter-at-breast-height threshold was determined for each tree species, after which the probability of cavity occurrence was enhanced in terms of potential cavity trees for Barrow’s Goldeneye. Remnant linear forest sites had lower potential tree densities than did their unharvested equivalents. Large cavities were thus a rare component in this boreal landscape, suggesting that they may be a limiting factor for this population at risk. Current even-aged forest management that mainly relies on clear-cut practices is likely to further reduce the potential of this landscape to provide trees with suitable cavities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fast-growing poplar trees may in future be used as a source of renewable energy for heat, electricity and biofuels such as bioethanol. Water use in Populus x euramericana (clone I214), following long-term exposure to elevated CO2 in the POPFACE (poplar free-air carbon dioxide enrichment) experiment, is quantified here. Stomatal conductance was measured and, during two measurement campaigns made before and after coppicing, whole-tree water use was determined using heat-balance sap-flow gauges, first validated using eddy covariance measurements of latent heat flux. Water use was determined by the balance between leaf-level reductions in stomatal conductance and tree-level stimulations in transpiration. Reductions in stomatal conductance were found that varied between 16 and 39% relative to ambient air. Whole-tree sap flow was increased in plants growing under elevated CO2, on average, by 12 and 23%, respectively, in the first and in the second measurement campaigns. These results suggest that future CO2 concentrations may result in an increase in seasonal water use in fast-growing, short-rotation Populus plantations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanism of active stress generation in tension wood is still not fully understood. To characterize the functional interdependency between the G-layer and the secondary cell wall, nanostructural characterization and mechanical tests were performed on native tension wood tissues of poplar (Populus nigra x Populus deltoids) and on tissues in which the G-layer was removed by an enzymatic treatment. In addition to the well-known axial orientation of the cellulose fibrils in the G-layer, it was shown that the microfibril angle of the S2-layer was very large (about 36 degrees). The removal of the G-layer resulted in an axial extension and a tangential contraction of the tissues. The tensile stress-strain curves of native tension wood slices showed a jagged appearance after yield that could not be seen in the enzyme-treated samples. The behaviour of the native tissue was modelled by assuming that cells deform elastically up to a critical strain at which the G-layer slips, causing a drop in stress. The results suggest that tensile stresses in poplar are generated in the living plant by a lateral swelling of the G-layer which forces the surrounding secondary cell wall to contract in the axial direction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leaf expansion in the fast-growing tree,Populus × euramericana was stimulated by elevated [CO2] in a closed-canopy forest plantation, exposed using a free air CO2 enrichment technique enabling long-term experimentation in field conditions. The effects of elevated [CO2] over time were characterized and related to the leaf plastochron index (LPI), and showed that leaf expansion was stimulated at very early (LPI, 0–3) and late (LPI, 6–8) stages in development. Early and late effects of elevated [CO2] were largely the result of increased cell expansion and increased cell production, respectively. Spatial effects of elevated [CO2] were also marked and increased final leaf size resulted from an effect on leaf area, but not leaf length, demonstrating changed leaf shape in response to [CO2]. Leaves exhibited a basipetal gradient of leaf development, investigated by defining seven interveinal areas, with growth ceasing first at the leaf tip. Interestingly, and in contrast to other reports, no spatial differences in epidermal cell size were apparent across the lamina, whereas a clear basipetal gradient in cell production rate was found. These data suggest that the rate and timing of cell production was more important in determining leaf shape, given the constant cell size across the leaf lamina. The effect of elevated [CO2] imposed on this developmental gradient suggested that leaf cell production continued longer in elevated [CO2] and that basal increases in cell production rate were also more important than altered cell expansion for increased final leaf size and altered leaf shape in elevated [CO2].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a free-air CO2 enrichment (FACE) experiment, poplar trees (Populus · euramericana clone I214) were exposed to either ambient or elevated [CO2] from planting, for a 5-year period during canopy development, closure, coppice and re-growth. In each year, measurements were taken of stomatal density (SD, number mm2) and stomatal index (SI, the proportion of epidermal cells forming stomata). In year 5, measurements were also taken of leaf stomatal conductance (gs, lmol m2 s1), photosynthetic CO2 fixation (A, mmol m2 s1), instantaneous water-use efficiency (A/E) and the ratio of intercellular to atmospheric CO2 (Ci:Ca). Elevated [CO2] caused reductions in SI in the first year, and in SD in the first 2 years, when the canopy was largely open. In following years, when the canopy had closed, elevated [CO2] had no detectable effects on stomatal numbers or index. In contrast, even after 5 years of exposure to elevated [CO2], gs was reduced, A/E was stimulated, and Ci:Ca was reduced relative to ambient [CO2]. These outcomes from the long-term realistic field conditions of this forest FACE experiment suggest that stomatal numbers (SD and SI) had no role in determining the improved instantaneous leaf-level efficiency of water use under elevated [CO2]. We propose that altered cuticular development during canopy closure may partially explain the changing response of stomata to elevated [CO2], although the mechanism for this remains obscure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Future high levels of atmospheric carbon dioxide (CO2) may increase biomass production of terrestrial plants and hence plant requirements for soil mineral nutrients to sustain a greater biomass production. Phosphorus (P), an element essential for plant growth, is found in soils both in inorganic and in organic forms. In this work, three genotypes of Populus were grown under ambient and elevated atmospheric CO2 concentrations (FACE) for 5 years. An N fertilisation treatment was added in years 4 and 5 after planting. Using a fractionation scheme, total P was sequentially extracted using H2O, NaOH, HCl and HNO3, and P determined as both molybdate (Mo) reactive and total P. Molybdate-reactive P is defined as mainly inorganic but also some labile organic P which is determined by Vanado-molybdophosphoric acid colorimetric methods. Organic P was also measured to assess all plant available and weatherable P pools. We tested the hypotheses that higher P demand due to increased growth is met by a depletion of easily weatherable soil P pools, and that increased biomass inputs increases the amount of organic P in the soil. The concentration of organic P increased under FACE, but was associated with a decrease in total soil organic matter. The greatest increase in the soil P due to elevated CO2 was found in the HCl-extractable P fraction in the non-fertilised treatment. In the NaOH-extractable fraction the Mo-reactive P increased under FACE, but total P did not differ between ambient and FACE. The increase in both the NaOH- and HCl-extractable fractions was smaller after N addition. The results showed that elevated atmospheric CO2 has a positive effect on soil P availability rather than leading to depletion.We suggest that the increase in the NaOH- and HCl-extractable fractions is biologically driven by organic matter mineralization, weathering and mycorrhizal hyphal turnover.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A poplar short rotation coppice (SRC) grown for the production of bioenergy can combine carbon (C) storage with fossil fuel substitution. Here, we summarize the responses of a poplar (Populus) plantation to 6 yr of free air CO2 enrichment (POP/EUROFACE consisting of two rotation cycles). We show that a poplar plantation growing in nonlimiting light, nutrient and water conditions will significantly increase its productivity in elevated CO2 concentrations ([CO2]). Increased biomass yield resulted from an early growth enhancement and photosynthesis did not acclimate to elevated [CO2]. Sufficient nutrient availability, increased nitrogen use efficiency (NUE) and the large sink capacity of poplars contributed to the sustained increase in C uptake over 6 yr. Additional C taken up in high [CO2] was mainly invested into woody biomass pools. Coppicing increased yield by 66% and partly shifted the extra C uptake in elevated [CO2] to above-ground pools, as fine root biomass declined and its [CO2] stimulation disappeared. Mineral soil C increased equally in ambient and elevated [CO2] during the 6 yr experiment. However, elevated [CO2] increased the stabilization of C in the mineral soil. Increased productivity of a poplar SRC in elevated [CO2] may allow shorter rotation cycles, enhancing the viability of SRC for biofuel production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results of extensive site reconnaissance on the Isles of Tiree, Coll and north-west Mull, Inner Hebrides are presented. Pollen-stratigraphic records were compiled from a profile from Glen Aros, north-west Mull and from two profiles on Coll located at Loch an t-Sagairt and Caolas an Eilean. Quantification of microscopic charcoal provided records that were used to facilitate a preliminary evaluation of the causal driving mechanisms of vegetation change. Bayesian modelling of radiocarbon dates was used to construct preliminary chronological frameworks for these records. Basal sedimentary deposits at Glen Aros contain pollen records that correspond with vegetation succession typical of the early Holocene dating to c. 11,370 cal BP. Woodland development is a key feature of the pollen records dating to the early Holocene, while records from Loch an t-Sagairt show that blanket mire communities were widespread in north-west Coll by c. 9800 cal BP. The Corylus-rise is dated to c. 10,710 cal BP at Glen Aros and c. 9905 cal BP at Loch an t-Sagairt, with records indicating extensive cover of hazel woodland with birch. All of the major arboreal taxa were recorded, though Quercus and Ulmus were nowhere widespread. Analysis of wood charcoal remains from a Mesolithic site at Fiskary Bay, Coll indicate that Salix and Populus are likely to be under-represented in the pollen records. Reconstructed isopoll maps appear to underplay the importance of alder in western Scotland during the mid-Holocene. Alder-rise expansions in microscopic charcoal dating to c. 7300 cal BP at Glen Aros and c. 6510 to 5830 cal BP on Coll provide records of significance to the issue of human-induced burning related to the expansion of alder in Britain. Increasing frequencies in microscopic charcoal are correlated with mid-Holocene records of increasing aridity in western Scotland after c. 7490 cal BP at Glen Aros, 6760 cal BP at Loch an t-Sagairt and 6590 cal BP at Caolas an Eilean, while several phases of increasing bog surface wetness were detected in the Loch an t-Sagairt archive during the Holocene. At least five phases of small-scale woodland disturbance during the Mesolithic period were identified in the Glen Aros profile dating to c. 11,650 cal BP, 9300 cal BP, 7840 cal BP, 7040 cal BP and 6100 cal BP. The timing of the third phase is coincident with evidence of Mesolithic settlement at Creit Dhu, north-west Mull. Three phases of small-scale woodland disturbance were detected at Loch an t-Sagairt dating to c. 9270 cal BP, 8770 cal BP and 8270 cal BP, all of which overlap chronologically with evidence of Mesolithic activity at Fiskary Bay, Coll. A number of these episodes are aligned chronologically with phases of Holocene climate variability such as the 8.2 K event.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transposable elements are major components of plant genomes and they influence their evolution, acting as recombination hot spots, acquiring specific cell functions or becoming part of protein-coding regions. The latter is the subject of the present analysis. This study is a report on the annotation of transposable elements (TEs) in expressed sequences of Coffea arabica, Coffea canephora and Coffea racemosa, showing the occurrence of 383 ESTs and 142 unigenes with TE fragments in these three Coffea species. Based on selected unigenes, it was possible to suggest 26 putative proteins with TE-cassette insertions, demonstrating a likely contribution to protein variability. The genes for two of those proteins, the fertility restorer (FR) and the pyrophosphate-dependent phosphofructokinase (PPi-PFKs) genes, were selected for evaluating the impact of TE-cassettes on host gene evolution of other plant genomes (Arabidopsis thaliana, Oryza sativa and populus trichocarpa). This survey allowed identifying a FR gene in O. sativa harboring multiple insertions of LTR retrotransposons that originated new exons, which however does not necessarily mean a case of molecular domestication. A possible transduction event of a fragment of the PPi-PFK beta-subunit gene mediated by Helitron ATREPX1 in Arabidopsis thaliana was also highlighted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel species of fungi described in the present study include the following from Malaysia: Castanediella eucalypti from Eucalyptus pellita, Codinaea acacia from Acacia mangium, Emarcea eucalyptigena from Eucalyptus brassiana, Myrtapenidiella eucalyptorum from Eucalyptus pellita, Pilidiella eucalyptigena from Eucalyptus brassiana and Strelitziana malaysiana from Acacia mangium. Furthermore, Stachybotrys sansevieriicola is described from Sansevieria ehrenbergii (Tanzania), Phacidium grevilleae from Grevillea robusta (Uganda), Graphium jumulu from Adansonia gregorii and Ophiostoma eucalyptigena from Eucalyptus marginata (Australia), Pleurophoma ossicola from bone and Plectosphaerella populi from Populus nigra (Germany), Colletotrichum neosansevieriae from Sansevieria trifasciata, Elsinoë othonnae from Othonna quinquedentata and Zeloasperisporium cliviae (Zeloasperisporiaceae fam. nov.) from Clivia sp. (South Africa), Neodevriesia pakbiae, Phaeophleospora hymenocallidis and Phaeophleospora hymenocallidicola on leaves of a fern (Thailand), Melanconium elaeidicola from Elaeis guineensis (Indonesia), Hormonema viticola from Vitis vinifera (Canary Islands), Chlorophyllum pseudoglobossum from a grassland (India), Triadelphia disseminata from an immunocompromised patient (Saudi Arabia), Colletotrichum abscissum from Citrus (Brazil), Polyschema sclerotigenum and Phialemonium limoniforme from human patients (USA), Cadophora vitícola from Vitis vinifera (Spain), Entoloma flavovelutinum and Bolbitius aurantiorugosus from soil (Vietnam), Rhizopogon granuloflavus from soil (Cape Verde Islands), Tulasnella eremophila from Euphorbia officinarum subsp. echinus (Morocco), Verrucostoma martinicensis from Danaea elliptica (French West Indies), Metschnikowia colchici from Colchicum autumnale (Bulgaria), Thelebolus microcarpus from soil (Argentina) and Ceratocystis adelpha from Theobroma cacao (Ecuador). Myrmecridium iridis (Myrmecridiales ord. nov., Myrmecridiaceae fam. nov.) is also described from Iris sp. (The Netherlands). Novel genera include (Ascomycetes): Budhanggurabania from Cynodon dactylon (Australia), Soloacrosporiella, Xenocamarosporium, Neostrelitziana and Castanediella from Acacia mangium and Sabahriopsis from Eucalyptus brassiana (Malaysia), Readerielliopsis from basidiomata of Fuscoporia wahlbergii (French Guyana), Neoplatysporoides from Aloe ferox (Tanzania), Wojnowiciella, Chrysofolia and Neoeriomycopsis from Eucalyptus (Colombia), Neophaeomoniella from Eucalyptus globulus (USA), Pseudophaeomoniella from Olea europaea (Italy), Paraphaeomoniella from Encephalartos altensteinii, Aequabiliella, Celerioriella and Minutiella from Prunus (South Africa). Tephrocybella (Basidiomycetes) represents a novel genus from wood (Italy). Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poplars consist of all species of the genus Populus, including cottonwoods, aspens, and the many interspecies hybrids in common use (Dickmann and Stuart 1983). Our working group focused on the fungal pathogens, arthropod herbivores, and weed competitors of Populus in the United States. However, bacterial and viral diseases of Populus are significant in Europe, and genetic engineering approaches toward their control or management are being studied. The key aspects of poplar biology important to understanding the use of pest resistance genes are described below.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fire scar and vegetative analysis were used to construct a fire history for the Engelmann spruce/subalpine fir (Picea engelmannii/Abies lasiocarpa) vegetation type of the Utah State University (USU) T. W Daniel Experimental Forest. Three distinct periods of fire frequency were established-presettlement (1700-1855), settlement (1856-1909), and suppression (1910-1990). Mean fire interval (MFI) decreased during the settlement period and greatly increased during the suppression era. The difference was attributed to the influx of ignition sources during the settlement of nearby Cache Valley, located 40 km to the west. Logging and livestock grazing appear to have led to the reduced MFI, which in turn worked as a factor to create the vegetative mosaic now observed on the study area. The increase in MFI during the suppression era permitted the advancement of shade-tolerant species in the understory of the shade-intolerant lodgepole pine (Pinus contorta var. latifolia) and quaking aspen (Populus tremuloides). Continued suppression of disturbance from wildfire will allow the lodgepole pine cover type, which experienced the lowest MFI during the settlement period, to be further invaded by shade-tolerant species, decreasing spatial stand diversity and increasing the risk of more intense fires.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Peroxiredoxins have diverse functions in cellular defense-signaling pathways. 2-Cys-peroxiredoxins (2-Cys-Prx) reduce H2O2 and alkyl-hydroperoxide. This study describes the purification and characterization of a genuine 2-Cys-Prx from Vigna unguiculata (Vu-2-Cys-Prx). Methods: Vu-2-Cys-Prx was purified from leaves by ammonium sulfate fractionation, chitin affinity and ion exchange chromatography. Results: Vu-2-Cys-Prx reduces H2O2 using NADPH and DTT. Vu-2-Cys-Prx is a 44 kDa (SDS-PAGE)/46 kDa (exclusion chromatography) protein that appears as a 22 kDa molecule under reducing conditions, indicating that it is a homodimer linked intermolecularly by disulfide bonds and has a pI range of 4.56-4.72; its NH2-terminal sequence was similar to 2-Cys-Prx from Phaseolus vulgaris (96%) and Populus tricocarpa (96%). Analysis by ESI-Q-TOF MS/MS showed a molecular mass/pI of 28.622 kDa/5.18. Vu-2-Cys-Prx has 8% alpha-helix, 39% beta-sheet, 22% of turns and 31% of unordered forms. Vu-2-Cys-Prx was heat stable, has optimal activity at pH 7.0, and prevented plasmid DNA degradation. Atomic force microscopy shows that Vu-2-Cys-Prx oligomerized in decamers which might be associated with its molecular chaperone activity that prevented denaturation of insulin and citrate synthase. Its cDNA analysis showed that the redox-active Cys(52) residue and the amino acids Pro(45), Thr(49) and Arg(128) are conserved as in other 2-Cys-Prx. General significance: The biochemical and molecular features of Vu-2-Cys-Prx are similar to other members of 2-Cys-Prx family. To date, only one publication reported on the purification of native 2-Cys-Prx from leaves and the subsequent analysis by N-terminal Edman sequencing, which is crucial for construction of stromal recombinant 2-Cys-Prx proteins. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objectives of this thesis are to establish a chronological framework for environmental changes during the last 15,000 years in northwest Romania, to reconstruct the vegetation development, and to evaluate the underlying processes for forest dynamics. Furthermore, an overview of earlier and ongoing pollenstratigraphic work in Romania is provided. Sediments from two former crater lakes, Preluca Tiganului and Steregoiu, situated in the Gutaiului Mountains, on the western extremity of the Eastern Carpathians at 730 m and 790 m a.s.l., respectively were obtained and analysed for high-resolution pollen, macrofossils, charcoal, mineral magnetic parameters and organic matter. The chronostratigraphic framework was provided by dense AMS 14C measurements. Cold and dry climatic conditions are indicated by the occurrence of open vegetation with shrubs and herbs, and cold lake water prior to 14,700 cal. yr BP. The climatic improvement at the beginning of the Lateglacial interstadial (around 14,700 cal. yr BP) is seen by the development of open forests. These were dominated by Pinus and Betula, but contained also new arriving tree taxa, such as Populus, Alnus and Prunus. The gradual establishment of forests may have led to a stabilization of the soils in the catchment. Between ca. 14,100 and 13,800 cal. yr BP the forest density became reduced to stands of Pinus, Betula, Alnus, Larix and Populus trees and grassland expanded, suggesting colder climatic conditions. Picea arrived as a new taxon at around 13,800 cal. yr BP, and between 13,800 and 12,900 cal. yr BP, the surroundings of the sites were predominantly covered by Picea forest. This forest included Betula, Pinus, Alnus, Larix and Populus and, from 13,200 cal. yr BP onwards also Ulmus. At ca. 12,900 cal. yr BP, the forest became significantly reduced and at 12,600 cal. yr BP, a recurrence of open vegetation with stands of Larix, Pinus, Betula, Salix and Alnus is documented, lasting until 11,500 cal. yr BP. This distinct change in vegetation may by taken as a strong decline in temperature and moisture availability. At the transition to the Holocene, at ca. 11,500 cal. yr BP, Pinus, Betula and Larix quickly expanded (from small local stands) and formed open forests, probably as a response to warmer and more humid climatic conditions. At 11,250 cal. yr BP Ulmus and Picea expanded and the landscape became completely forested. The rapid increase of Ulmus and Picea after 11,500 cal. yr BP may suggest the existence of small residual populations close to the study sites during the preceding cold interval. Ulmus was the first and most prominent deciduous taxa in the early Holocene in the Gutaiului Mountains. From ca. 10,750 cal. yr BP onwards Quercus, Tilia, Fraxinus and Acer expanded and Corylus arrived. A highly diverse, predominantly deciduous forest with Ulmus, Quercus, Tilia, Fraxinus, Acer, Corylus and Picea developed between 10,700 and 8200 cal. yr BP, which possibly signifies more continental climatic conditions. The development of a Picea-Corylus dominated forest between 8200 and 5700 cal. yr BP is likely connected to a more humid and cooler climate. The establishment of Carpinus and Fagus was dated to 5750 cal. yr BP and 5200 cal. yr BP, respectively. The dominance of Fagus during the late Holocene, from 4000 cal. yr BP onwards, may have been related to cooler and more humid climatic conditions. First signs of human activities are recorded around 2300 cal. yr BP, but only during the last 300 years did local human impact become significant. The vegetation development recorded in the Gutaiului Mountains during the Lateglacial is very similar to reconstructions based on lowland sites, whereas higher elevation sites seem not to have always experienced visible vegetation changes. The time of tree arrival and expansion during the past 11,500 cal. yr BP seems to have occurred almost synchronously across Romania. The composition of the forests during the Holocene in the Gutaiului Mountains is consistent with that reconstructed at mid-elevation sites, but differs from the forest composition at higher elevations. Important differences between the Gutaiului Mountains and other studied sites in Romania are a low representation of Carpinus and a late and weak human impact. The available data sets for Romania give evidence for the presence of coniferous and cold-tolerant deciduous trees before 14,700 cal. yr BP. Glacial refugia for Ulmus may have occurred in different parts of Romania, whereas the existence of Quercus, Tilia, Corylus and Fraxinus has not been corroborated.