933 resultados para POLYMERIC ENCAPSULATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the central dogmas of fluid physics is the no-slip boundary condition, whose validity has come under scrutiny, especially in the fields of micro and nanofluidics. Although various studies show the violation of the no-slip condition its effect on flow of colloidal particles in viscous media has been rarely explored. Here we report unusually large reduction of effective viscosity experienced by polymeric nano colloids moving through a highly viscous and confined polymer, well above its glass transition temperature. The extent of reduction in effective interface viscosity increases with decreasing temperature and polymer film thickness. Concomitant with the reduction in effective viscosity we also observe apparent divergence of the wave vector dependent hydrodynamic interaction function of these colloids with an anomalous power law exponent of similar to 2 at the lowest temperatures and film thickness studied. Such strong hydrodynamic interactions are not expected for polymeric colloidal motion in polymer melts. We suggest hydrodynamics, especially slip present at the colloid-polymer interface which determines the observed reduction in interface viscosity and presence of strong hydrodynamic interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that a film of a suspension of polymer grafted nanoparticles on a liquid substrate can be employed to create two-dimensional nanostructures with a remarkable variation in the pattern length scales. The presented experiments also reveal the emergence of concentration-dependent bimodal patterns as well as re-entrant behaviour that involves length scales due to dewetting and compositional instabilities. The experimental observations are explained through a gradient dynamics model consisting of coupled evolution equations for the height of the suspension film and the concentration of polymer. Using a Flory-Huggins free energy functional for the polymer solution, we show in a linear stability analysis that the thin film undergoes dewetting and/or compositional instabilities depending on the concentration of the polymer in the solution. We argue that the formation via `hierarchical self-assembly' of various functional nanostructures observed in different systems can be explained as resulting from such an interplay of instabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The world has dominated by automation, wireless communication and various electronic equipments, which has led to the most undesirable offshoots like electromagnetic (EM) pollution. The rationale is environmental concern and the necessity to develop EM absorbing materials. This paper reviews the state of the art of designing polymer based nanocomposites containing nanoscopic particles with high electrical conductivity and complex microwave properties for enhanced EM attenuation. Given the brevity of this review article, herein we have summarized the high frequency millimetre wave absorbing properties of polymer nanocomposites consisting of various nanoparticles that either reflect or absorb microwave radiation like electrically conducting carbon nanotubes (CNTs) and graphene nanosheets (GNs), high dielectric constant ceramic nanoparticles that show relaxation loss in the microwave frequency and magnetic metal and ferrite nanoparticles that absorb microwave radiation through natural resonance, eddy current and hysteresis losses. Furthermore, we have stressed the necessity and impact of hybrid nanoparticles consisting of magnetic and dielectric nanoparticles along with conducting inclusions like CNT and GNs in this review. Electromagnetic interference (EMI) theory and necessary criterion for attenuation has been briefly discussed. The emphasis is made on various mechanisms towards EM attenuation controlled by these nanoparticles. Various structures developed using polymer nanocomposites like bulk, foam and layered structures and their effect on EM attenuation has been elaborately discussed. In addition, various covalent/non-covalent modifications on nanoparticles have been juxtaposed in context to EM attenuation. In addition, we have highlighted important facets and direction for enhancing the microwave attenuation. (C) 2016 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electromagnetic interference shielding (EMI) materials were designed using PC (polycarbonate)/SAN poly(styrene-co-acrylonitrile)] blends containing few-layered graphene nanosheets decorated with nickel nanoparticles (G-Ni). The graphene nanosheets were decorated with nickel nanoparticles via the uniform nucleation of the metal salt precursor on graphene sheets as the substrate. In order to localize the nanoparticles in the PC phase of the PC/SAN blends, a two-step mixing protocol was adopted. In the first step, graphene sheets were mixed with PC in solution and casted into a film, followed by dilution of these PC master batch films with SAN in the subsequent melt extrusion step. The dynamic mechanical properties, ac electrical conductivity, EMI shielding effectiveness and thermal conductivity of the composites were evaluated. The G-Ni nanoparticles significantly improved the electrical and thermal conductivity in the blends. In addition, a total shielding effectiveness (SET) of -29.4 dB at 18 GHz was achieved with G-Ni nanoparticles. Moreover, the blends with G-Ni exhibited an impressive 276% higher thermal conductivity and 29.2% higher elastic modulus with respect to the neat blends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite intensive research on optimizing the methods for depositing carbon encapsulated ferromagnetic nanoparticles, the effect of the carbon cages remains unclear. In the present work, the effect of the graphitic cages on the magnetization of the ferromagnetic core has been studied by comparing the magnetic properties of pure and carbon encapsulated Ni particles of the same size. The carbon encapsulated Ni particles were formed using an electric arc discharge in de-ionized water between a solid graphite cathode and an anode consisting of Ni and C in a mass ratio of Ni:C = 7:3. This method is shown to have potential for low cost production of carbon encapsulated Ni nanoparticle samples with narrow particle size distributions. X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) analysis were used to study the crystallography, morphology, and size distribution of the encapsulated and pure Ni nanoparticle samples. The availability of encapsulated particles with various sizes allowed us to elucidate the role of carbon cages in size-dependent properties. Our data suggest that even though encapsulation is beneficial for protection against hostile chemical environments and for avoiding low proximity phenomena, it suppresses the saturation magnetization of the Ni cores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tensile and compressive tests have been performed on centre-hole panels, made from three types of metallic foams and two polymeric foams. In compression, the foams fail in a ductile, notch-insensitive manner, in support of a "net section strength" criterion. In tension, a ductile-brittle transition is observed for some of the foams at sufficiently large specimen sizes: for a small hole diameter the net section strength criterion is obeyed, whereas for a large hole a local stress criterion applies and the net section strength is reduced. For a number of the foams, the panel size was not sufficiently large to observe this ductile-brittle switch in behaviour. The predictions of a cohesive zone model are compared with the measured strengths and are found to be in good agreement. © 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bonded networks of metal fibres are highly porous, permeable materials, which often exhibit relatively high strength. Material of this type has been produced, using melt-extracted ferritic stainless steel fibres, and characterised in terms of fibre volume fraction, fibre segment (joint-to-joint) length and fibre orientation distribution. Young's moduli and yield stresses have been measured. The behaviour when subjected to a magnetic field has also been investigated. This causes macroscopic straining, as the individual fibres become magnetised and tend to align with the applied field. The modeling approach of Markaki and Clyne, recently developed for prediction of the mechanical and magneto-mechanical properties of such materials, is briefly summarised and comparisons are made with experimental data. The effects of filling the inter-fibre void with compliant (polymeric) matrices have also been explored. In general the modeling approach gives reliable predictions, particularly when the network architecture has been characterised using X-ray tomography. © 2005 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An intended numerical investigation is carried out. The results indicate that, even if a perfect adhesive bond is preserved between the particles and matrix materials, the two-phase element cell model is unable to predict the strength increment of the particulate polymeric composites (PPC). To explore the main reinforcing mechanism, additional microscopic experiment is performed. An ''influence zone'' was observed around each particle which is measured about 2 to 10 micrometers in thickness for a glass-polyethylene mixture. Then, an improved computational model is presented to include the ''influence zone'' effect and several mechanical behaviors of PPC are well simulated through this new model.

Relevância:

20.00% 20.00%

Publicador: