994 resultados para POLY(ETHER IMIDE)S


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composites made of calcium modified lead titanate ceramic powder and poly (ether-ether-ketone) high performance polymer matrix were prepared in the film form using a hot press. The acoustic and electromechanical properties of the composites have been determined using the ultrasonic immersion technique and piezoelectric spectroscopy, respectively. The composite film with 60 - 40 vol.% PTCa/PEEK was tested as acoustic emission detector. Preliminary results shown that the piezo composite can be used as sensor to evaluate the behavior of materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The admittance spectra and current-voltage (I-V) characteristics are reported of metal-insulator-metal (MIM) and metal-insulator-semiconductor (MIS) capacitors employing cross-linked poly(amide-imide) (c-PAI) as the insulator and poly(3-hexylthiophene) (P3HT) as the active semiconductor. The capacitance of the MIM devices are constant in the frequency range from 10 Hz to 100 kHz, with tan delta values as low as 7 x 10(-3) over most of the range. Except at the lowest voltages, the I-V characteristics are well-described by the Schottky equation for thermal emission of electrons from the electrodes into the insulator. The admittance spectra of the MIS devices displayed a classic Maxwell-Wagner frequency response from which the transverse bulk hole mobility was estimated to be similar to 2 x 10(-5) cm(2) V(-1)s(-1) or similar to 5 x 10(-8) cm(2) V(-1)s(-1) depending on whether or not the surface of the insulator had been treated with hexamethyldisilazane (HMDS) prior to deposition of the P3HT. From the maximum loss observed in admittance-voltage plots, the interface trap density was estimated to be similar to 5 x 10(10) cm(-2) eV(-1) or similar to 9 x 10(10) cm(-2) eV(-1) again depending whether or not the insulator was treated with HMDS. We conclude, therefore, that HMDS plays a useful role in promoting order in the P3HT film as well as reducing the density of interface trap states. Although interposing the P3HT layer between the insulator and the gold electrode degrades the insulating properties of the c-PAI, nevertheless, they remain sufficiently good for use in organic electronic devices. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Triblock copolymers are made of monomer segments, being the central part usually hydrophobic and the outer parts hydrophilic. By varying sizes, molecular weights and monomer types of the segments one obtains different final molecules, with different physico-chemical properties, which are directly related to the performance of the final product. Looking for new products to be used, among other possibilities, in biological applications, a new polymer (Figure 1) was synthesized by the Dow Chemical and studied by Size Exclusion Chromatography, Fourier Transformed Infrared Spectrometry, Small-angle X-ray Scattering (SAXS) and its cloud point was determined by measuring light transmittance. The studies showed low molecular polydispersivety, but different polarities in the macromolecules fractions. Due to the low solubility of Diol in water, a mixture of water/butyl diglycol was used as solvent. An extensive analysis by SAXS was performed for concentrations from 50 wt% to 80 wt% of Diol in solution. Small concentrations showed very low signal to noise ratio, making it impossible to be analysed. The scattering intensity including the form factor of polydisperse non-homogeneous spheres, and the structure factor of interacting hard spheres was fitted to the curves. As the polymer concentration is high, the fitting of form factors of direct and reverse micelles were compared. The results for direct micelles were better up to 80 wt%, whereas at 90 wt% and 95 wt% the curves were better fitted by reverse micelles. It might seem odd that direct micelles are present up to such high concentrations, but it might have been caused by the presence of butyl diglycol, which increases the solubility of Diol in water. The inner and outer radius of the micelles, electron density distribution, and interaction radius of the micelles were obtained. The polydispersivety increases with Diol concentration. Besides, the interaction radius increases with solvent concentration, even when reversed micelles are present. In the last case, accompanied by an increase of inner radius (water content), as there are fewer Diol molecules to involve the water nuclei, which become larger, further apart, and in less number.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rheological and tribological properties of single-walled carbon nanotube (SWCNT)-reinforced poly(phenylene sulphide) (PPS) and poly(ether ether ketone) (PEEK) nanocomposites prepared via melt-extrusion were investigated. The effectiveness of employing a dual-nanofiller strategy combining polyetherimide (PEI)-wrapped SWCNTs with inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles for property enhancement of the resulting hybrid composites was evaluated. Viscoelastic measurements revealed that the complex viscosity ?, storage modulus G?, and loss modulus G? increased with SWCNT content. In the low-frequency region, G? and G? became almost independent of frequency at higher SWCNT loadings, suggesting a transition from liquid-like to solid-like behavior. The incorporation of increasing IF-WS2 contents led to a progressive drop in ? and G? due to a lubricant effect. PEEK nanocomposites showed lower percolation threshold than those based on PPS, ascribed to an improved SWCNT dispersion due to the higher affinity between PEI and PEEK. The SWCNTs significantly lowered the wear rate but only slightly reduced the coefficient of friction. Composites with both nanofillers exhibited improved wear behavior, attributed to the outstanding tribological properties of these nanoparticles and a synergistic reinforcement effect. The combination of SWCNTs with IF-WS2 is a promising route for improving the tribological and rheological performance of thermoplastic nanocomposites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A busca por membranas com propriedades adequadas a separação de gases em escala industrial tem levado a modificação e sIntese de polImeros de engenharia, com objetivo de obter membranas com propriedades adequadas. Uma das modificaçoes que tem se apresentado promissora é a inserção de grupos sulfônicos em polImeros comerciais. Espera-se que o polImero sulfonado apresente um aumento na permeação de gases polares, em relação a gases apolares, devido a sua estrutura mais polar e flexIvel. Neste contexto, o objetivo do presente trabalho é a sIntese e caracterização de membranas de poli(éter imida) sulfonada para a permeação de gases. Um planejamento experimental foi desenvolvido, em diferentes condiçoes reacionais de temperatura, tempo e excesso de um dos reagentes (ácido acético), para a sIntese de poli(éter imida) sulfonada (SPEI). Através deste planejamento, constatou-se que as variáveis que mais influenciam o grau de sulfonação são a temperatura e o tempo. O polImero com o maior grau de sulfonação, determinado por capacidade de troca iônica (IEC= 92 mEq H+/g), foi utilizado para o preparo da membrana de SPEI, obtida pela técnica de inversão de fase por evaporação do solvente, utilizando-se clorofórmio como solvente. Este filme foi caracterizado a partir das seguintes análises: espectroscopia de infravermelho (FTIR), calorimetria diferencial de varredura (DSC), análise termogravimétrica (TGA) e microscopia eletrônica de varredura (MEV), a fim de avaliar a influência da inserção do grupo sulfônico na matriz polimérica. O espectro de infravermelho de SPEI apresentou bandas relacionadas as vibraçoes assimétricas em 1240 cm-1 (ligação O=S=O), ligação simétrica em 1171 cm-1 (O=S=O) e ligação S-O entre 1010-1024 cm-1. Isto indica a presença de grupos sulfônicos. A análise de DSC foi realizada entre 150-250C. Nesta faixa, não foram observadas alteraçoes na temperatura de transição vItrea (Tg) do polImero modificado (217C). Acredita-se que a decomposição do grupo sulfona aconteça antes da temperatura atingir o Tg do polImero. Esta suposição é confirmada na análise de TGA. As imagens de MEV mostraram que foram obtidos filmes livres de poros e defeitos. A membrana da SPEI foi utilizada no ensaio de permeaçao dos gases 02, N2 e C02, a fim de determinar a permeabilidade e seletividade da membrana. As permeabilidades encontradas para o gas oxigênio foram de 0,76 barrer para a PEI e 0,46 barrer para a SPEI. A seletividade do dióxido de carbono em relaçao ao oxigênio aumentou de 3,5, na membrana de PEI, para 4,83, na membrana de SPEI. Em relaçao ao nitrogênio, as permeabilidades medidas foram 0,064 barrer e 0,043 barrer, para a PEI e para a SPEI, respectivamente, enquanto a seletividade em relaçao ao C02 aumentou de 41,1 para 55,5. Estes resultados indicam que o efeito de sorçao predominou devido ao aumento das interaçöes moleculares, reduzindo assim o volume livre, o que tornou a membrana sulfonada mais compacta, com permeabilidade menor e maior seletividade. Estes resultados corroboram com a premissa de que a sulfonaçao é um processo promissor para o desenvolvimento de membranas mais eficientes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2-(4-Aminophenyl)-5-aminopyrimidine (4) is synthesized via a condensation reaction of vinamidium salts and amidine chloride salts, followed by hydrazine palladium catalyzed reduction. A series of novel homo- and copolyimides containing pyrimidine unit are prepared from the diamine and 1,4-phenylenediamine (PDA) with pyromellitic dianhydride (PMDA) or 3,3',4,4'-biphenyl tertracarboxylic dianhydride (BPDA) via a conventional two-step thermal imidization method. The poly(amic acid) precursors had inherent viscosities of 0.97-4.38 dL/g (c = 0.5 g/dL, in DMAc, 30 degrees C) and all of them could be cast and thermally converted into flexible and tough polyimide films. All of the polyimides showed excellent thermal stability and mechanical properties. The glass transition temperatures of the resulting polyimides are in the range of 307-434 degrees C and the 10% weight loss temperature is in the range of 556-609 degrees C under air. The polyimide films possess strength at break in the range of 185-271 MPa, elongations at break in the range of 6.8-51%, and tensile modulus in the range of 3.5-6.46 GPa. The polymer films are insoluble in common organic solvents, exhibiting high chemical resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A facile method for the synthesis of biphenyl polyimides, which involves the nickel-catalyzed coupling of aromatic dichlorides containing imide structure in the presence of zinc and triphenylphosphine, has been developed. The polymerizations proceeded smoothly under mild conditions and produced biphenyl polyimides with inherent viscosities of 0.13-0.98 dL/g. The polymerizations of bis(4-chlorophthalimide)s with bulky side substituents gave high molecular weight polymers. Low molecular weight polymers from bis(4-chlorophthalimide)s containing rigid diamine moieties and bis(3-chlorophthalimide)s were obtained because of the formations of polymer precipitate and cyclic oligoimides, respectively. The effects of various factors, such as amount of catalyst, solvent volume, ligand, reaction temperature, and time, on the polymerization were studied. The random copolymerization of two bis(chlorophthalimide)s in varying proportions produced medium molecular weight material. The TgS of prepared polyimides were observed at 245-311 degreesC, and the thermogravimetry of polymers showed 10% weight loss in nitrogen at 470-530 degreesC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The UV-visible absorption and fluorescence spectra of a soluble polyimide, YS-30, in several organic solvents were measured over a wide range of concentration. The experimental results show that there exist both intramolecular and intermolecular electron donor acceptor interactions for YS-30 molecules. The fluorescence behavior of YS-30 in N,N-dimethylacetamide and in chloroform solutions is similar in general, except that its ground-state intermolecular charge transfer emission is more obvious in N,N-dimethylacetamide solution. This difference is attributed to the greater extent of disruption of the chain packing by solvent or/and the more efficient radiationless energy dissipation process from the excited state complexes to chloroform. The intensity ratio of intermolecular charge transfer emission to intramolecular charge transfer emission is used to characterize the state of aggregation of YS-30 molecules in solutions. The plot of this ratio versus concentration indicates the existence of two critical concentrations. It is also found from the same plot that the decrease of coil size is very pronounced during the initial stage of shrinkage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three kinds of high-performance polyimides 1 (poly(ketone-imide) PKI), 2 (poly(ether-imide) PEI) and 3 (poly(oxy-imide) POI) were studied using nuclear magnetic resonance (NMR). The NMR spectra of the polyimides were assigned according to the comprehensive consideration of the substitution effect of different substituting groups, viz. distortionless enhancement by polarization transfer (DEPT), no nuclear Overhauser effect (NNE), analysis of relaxation time, and two-dimensional correlated spectroscopy (COSY) techniques. The structural units of these three polyimides were determined. Carbon-13 and proton relaxation times for PEI and PKI were interpreted in terms of segmental motion characterized by the sharp cutoff model of Jones and Stockmayer (JS model) and anisotropic group rotation such as phenyl group rotation and methyl group rotation. Correlation times for the main-chain motion are in the tens of picosecond range which indicates the high flexibility of polyimide chains. Correlation times for phenyl group and methyl group rotations are more than 1 order of magnitude lower and approximately 1 order of magnitude higher than that of the main chain, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with a study of the photophysical property of poly(ether imine) (PETIM) dendritic macromolecule in the presence of aromatic compounds. The inherent photoluminescence property of the dendrimer undergoes quenching in the presence of guest aromatic nitro-compounds. From life-time measurements study, it is inferred that the lifetimes of luminescent species of the dendrimer are not affected with nitrophenols as guest molecules, whereas nitrobenzenes show a marginal change in the lifetimes of the species. Raman spectral characteristic of the macromolecular host-guest complex is conducted in order to identify conformational change of the dendrimer and a significant change in the stretching frequencies of methylene moieties of the dendrimer is observed for the complex with 1,3,5-trinitrobenzene, when compared to other complexes, free host and guest molecules. The photophysical behavior of electron-rich, aliphatic, neutral dendritic macromolecule in the presence of electron-deficient aromatic molecules is illustrated in the present study. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new monomer 1,5-bis(4-fluorobenzoyl)-2,6-dimethoxynaphthalene (DMNF) was prepared and further polymerized to form naphthalene-based poly(arylene ether ketone) copolymers containing methoxy groups (MNPAEKs). The side-chain-type sulfortated naphthalene-based poly(arylene ether ketone) copolymers (SNPAEKs) were obtained by demethylation and sulfobutylation. Flexible and tough membranes with reasonably high mechanical strength were prepared. The SNPAEKs membrane showed anisotropic membrane swelling with larger swelling in thickness than in plane. Transmission electron microscopy (TEM) analysis revealed clear nano-phase separated structure of SNPAEKs membranes, which composed of hydrophilic side chain and hydrophobic main-chain domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of soluble poly(amide-imide)s (PAIs) bearing triethylammonium sulfonate groups were synthesized directly using trimellitic anhydride chloride (TMAC) polycondensation with sulfonated diamine such as 2,2'-benzidinedisulfonic acid (BDSA), 4,4'-diaminodiphenyl ether-2,2'-disulfonic acid (ODADS), and nonsulfonated diamine 4,4-diaminodiphenyl methane in the presence of triethylamine. The resulting copolymers exhibited high molecular weights (high inherent viscosity), and a combination of desirable properties such as good solubility in dipolar aprotic solvents, film-forming capability, and good mechanical properties. Wide-angle X-ray diffraction revealed that the polymers were amorphous. These copolymers showed high permeability coefficients of water vapor because of the presence of the hydrophilic triethylammonium sulfonate groups. The water vapor permeability coefficients (P-w) and permselectivity coefficients of water vapor to nitrogen and methane [alpha(H2O/N-2) and (alpha(H2O/CH4)] Of the films increased with increasing the amount of the triethylammonium sulfonated groups.