930 resultados para PLASMODIUM-FALCIPARUM
Resumo:
The immunogenicity of a novel synthetic peptide consisting of an average of 40 (Asn-Ala-Asn-Pro) repeats of the circumsporozoite protein of Plasmodium falciparum, (NANP)40, was studied in mice without using any carrier proteins. First, high titers of anti-(NANP)40 antibodies could be obtained after immunization of C57BL/6 mice. These antibodies also reacted with an extract of mosquitoes infected with P. falciparum sporozoites. C57BL/6 nu/nu mice did not produce antibodies against (NANP)40. Secondly, when 14 strains of mice with nine different H-2 haplotypes were immunized with (NANP)40 without carrier, only H-2b mice were found to produce anti-(NANP)40 antibodies, whereas all non-H-2b mice were consistently unresponsive. This response was demonstrated to be I-A-linked by using recombinant and mutant mice. I-Ab [B10.A(5R)] mice produced anti-(NANP)40 antibodies as well as H-2b inbred mice. B6CH-2bm12 I-Ab-mutant mice showed only a very low response. Third, the antibody response against (NANP)40 could be induced in nonresponder mice by immunization with the peptide coupled to a carrier protein. In view of the existence of such an exceptional H-2b restriction in the response to sporozoite synthetic peptides in mice, the triggering of peptide-specific T cell responses in humans receiving sporozoite malaria vaccines might be difficult to achieve.
Resumo:
Sera from 29 individuals residing in a malaria-endemic region of Colombia were evaluated by an inhibition assay for their capacity to retard the growth of Plasmodium falciparum in vitro. The inhibitory activity was found to be independent of antibody activity. Furthermore, the degree of inhibition of parasite development was variable, depending on the parasite isolate used for the assay and the season of malaria transmission. We selected sera with high inhibitory activity and carried out partial analytical characterization by anion exchange fast protein liquid chromatography (FPLC) to identify the chemical nature of the inhibitory factor(s). The results suggested that the in vitro inhibitory activity might result from the additive effect of different molecules. It appears that these molecules could be non-specifically induced by stimulation of the immune system, they seem to play a role in the immunity to malaria.
Resumo:
In ongoing studies on experimental transmission of Plasmodium falciparum in the city of Yaounde gametocyte carriers are daily being identified among dispensary patients with malaria-like complaints. This species comprises 93 of all parasitemias and because of the selection criteria most patients have it as a recent infection. 17 of all P. falciparum-positives carry detectable gametocytes with little difference between youngsters and adults. Blood of adult carriers is taken and infection of Anopheles gambiae mosquitoes is attempted by membrane feeding; the establishment of infection is judged by the presence of oocysts.
Resumo:
Previous studies of subtelomeric regions in Plasmodium berghei led to the identification of subtelomeric repeats (2.3kb long) present in a variable number at many chromosomal ends. Both loss and increase in 2.3kb-repeat copy number are involved in chromosome-size polymorphisms. Subtelomeric losses leading to chromosome-size polymorphisms have been described by several authors in P.falciparum where the structure of subtelomeric regions is not known in detail. We therefore undertook their characterisation, by means of chromosome walking and jumping techniques, starting from the telomere-flanking sequence present in pPftel.1, the P.falciparum telomeric clone described by Vernick and McCutchan (1988). The results indicate that at least 20 (out of 28) chromosomal ends in P.falciparum 3D7 chromosomes share a subtelomeric region, about 40kb long, covering (but not limited to) the Rep20 region. Non repetitive, AT-rich portions flanking the Rep20 region on both sides are also conserved at most chromosomal ends.
Resumo:
Numerous proteinase activities have been shown to be essential for the survival of Plasmodium falciparum. One approach to antimalarial chemotherapy, would be to block specifically one or several of these activities, by using compounds structurally analogous to the substrates of these proteinases. Such a strategy requires a detailed knowledge of the active site of the proteinase, in order to identify the best substrate for the proteinase. Aiming at developing such a strategy, two proteinases previously identified in our laboratory, were chosen for further characterization of their molecular structure and properties: the merozoite proteinase for erythrocytic invasion (MPEI), involved in the erythrocyte invasion by the merozoites, and the Pf37 proteinase, which hydrolyses human spectrin in vitro.
Resumo:
The most unique characteristic of a parasite when it is in its normal host is the ability to make itself tolerated, which clearly indicates that it has sophisticated means to ensure the neutrality of its host. This is true also in the case of Plasmodium falciparum, since after numerous malaria attacks an equilibrium is reached with a chronic stage of infection, characterized by a relatively low parasitemia, and low or no disease (Sergent & Parrot 1935). We shall briefly review the main characteristics of this state of "premunition", and present data suggesting that the underlying mechanisms of defense rely on the cooperation between cell and antibodies, leading to an antibody dependent cellular inhibition of the intra-erythrocytic growth of the parasite.
Resumo:
A preliminary baseline epidemiological malaria survey was conducted in the village of Punta Soldado, Colombia. Parasite prevalence and density as well as serological data were obtained from 151 asymptomatic children and adults. Fifty individuals were infected with Plasmodium falciparum. The mean parasite density was 184 parasites/mm3. Greater than 90 of the sample population were P. falciparum antibody positive as detected by the indirect immunofluorescent antibody test (IFAT). The enzyme-linked immunosorbent assay (ELISA) was used to detect antibodies against the major merozoite surface protein (MSP-1) of P. falciparum. In this population, anti-MSP-1 antibody concentration is acquired in an age dependent manner with equal immunogenicity to both the N- and C-terminal regions of the molecule. Infection at the time of sampling was associated with a higher anti-MSP-1 antibody concentration than that found in non-infected individuals. Further studies are planned to assess the role of immune and non-immune factors in limiting the number of cases of severe malaria seen in this population.
Resumo:
We report the identification of a 48kDa antigen targeted by antibodies which inhibit Plasmodium falciparum in vitro growth by cooperation with blood monocytes in an ADCI assay correlated to the naturally acquired protection. This protein is located on the surface of the merozoite stage of P. falciparum, and is detectable in all isolates tested. Epidemiological studies demonstrated that peptides derived from the amino acid sequence of MSP-3 contain potent B and T-cell epitopes recognized by a majority of individuals living in endemic areas. Moreover human antibodies either purified on the recombinant protein, or on the synthetic peptide MSP-3b, as well as antibodies raised in mice, were all found to promote parasite killing mediated by monocytes.
Resumo:
We have analyzed the compositional properties of coding (protein encoding) and non-coding sequences of Plasmodium falciparum, a unicellular parasite characterized by an extremely AT-rich genome. GC% levels, base and dinucleotide frequencies were studied. We found that among the various factors that contribute to the properties of the sequences analyzed, the most relevant are the compositional constraints which operate on the whole genome
Resumo:
Nitric oxide (NO) and NO-derived reactive nitrogen species (RNS) are present in the food vacuole (FV) of Plasmodium falciparum trophozoites. The product of PFL1555w, a putative cytochrome b(5), localizes in the FV membrane, similar to what was previously observed for the product of PF13_0353, a putative cytochrome b(5) reductase. These two gene products may contribute to NO generation by denitrification chemistry from nitrate and/or nitrite present in the erythrocyte cytosol. The possible coordination of NO to heme species present in the food vacuole was probed by resonance Raman spectroscopy. The spectroscopic data revealed that in situ generated NO interacts with heme inside the intact FVs to form ferrous heme nitrosyl complexes that influence intra-vacuolar heme solubility. The formation of heme nitrosyl complexes within the FV is a previously unrecognized factor that could affect the equilibrium between soluble and crystallized heme within the FV in vivo.
Resumo:
Little is known about the molecular mechanisms underlying the release of merozoites from malaria infected erythrocytes. In this study membranous structures present in the culture medium at the time of merozoite release have been characterized. Biochemical and ultrastructural evidence indicate that membranous structures consist of the infected erythrocyte membrane, the parasitophorous vacuolar membrane and a residual body containing electron dense material. These are subcellular compartments expected in a structure that arises as a consequence of merozoite release from the infected cell. Ultrastructural studies show that a novel structure extends from the former parasite compartment to the surface membrane. Since these membrane modifications are detected only after merozoites have been released from the infected erythrocyte, it is proposed that they might play a role in the release of merozoites from the host cell