486 resultados para PLANETS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present new radial velocity measurements of eight stars that were secured with the spectrograph SOPHIE at the 193 cm telescope of the Haute-Provence Observatory. The measurements allow detecting and characterizing new giant extrasolar planets. The host stars are dwarfs of spectral types between F5 and K0 and magnitudes of between 6.7 and 9.6; the planets have minimum masses Mp sin i of between 0.4 to 3.8 MJup and orbitalperiods of several days to several months. The data allow only single planets to be discovered around the first six stars (HD 143105, HIP 109600, HD 35759, HIP 109384, HD 220842, and HD 12484), but one of them shows the signature of an additional substellar companion in the system. The seventh star, HIP 65407, allows the discovery of two giant planets that orbit just outside the 12:5 resonance in weak mutual interaction. The last star, HD 141399, was already known to host a four-planet system; our additional data and analyses allow new constraints to be set on it. We present Keplerian orbits of all systems, together with dynamical analyses of the two multi-planet systems. HD 143105 is one of the brightest stars known to host a hot Jupiter, which could allow numerous follow-up studies to be conducted even though this is not a transiting system. The giant planets HIP 109600b, HIP 109384b, and HD 141399c are located in the habitable zone of their host star.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extrasolar planets abound in almost any possible configuration. However, until five years ago, there was a lack of planets orbiting closer than 0.5 au to giant or subgiant stars. Since then, recent detections have started to populated this regime by confirming 13 planetary systems. We discuss the properties of these systems in terms of their formation and evolution off the main sequence. Interestingly, we find that 70.0 ± 6.6% of the planets in this regime are inner components of multiplanetary systems. This value is 4.2σ higher than for main-sequence hosts, which we find to be 42.4 ± 0.1%. The properties of the known planets seem to indicate that the closest-in planets (a< 0.06 au) to main-sequence stars are massive (i.e., hot Jupiters) and isolated and that they are subsequently engulfed by their host as it evolves to the red giant branch, leaving only the predominant population of multiplanetary systems in orbits 0.06

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The travel and hospitality industry is one which relies especially crucially on word of mouth, both at the level of overall destinations (Australia, Queensland, Brisbane) and at the level of travellers’ individual choices of hotels, restaurants, sights during their trips. The provision of such word-of-mouth information has been revolutionised over the past decade by the rise of community-based Websites which allow their users to share information about their past and future trips and advise one another on what to do or what to avoid during their travels. Indeed, the impact of such user-generated reviews, ratings, and recommendations sites has been such that established commercial travel advisory publishers such as Lonely Planet have experienced a pronounced downturn in sales ¬– unless they have managed to develop their own ways of incorporating user feedback and contributions into their publications. This report examines the overall significance of ratings and recommendation sites to the travel industry, and explores the community, structural, and business models of a selection of relevant ratings and recommendations sites. We identify a range of approaches which are appropriate to the respective target markets and business aims of these organisations, and conclude that there remain significant opportunities for further operators especially if they aim to cater for communities which are not yet appropriately served by specific existing sites. Additionally, we also point to the increasing importance of connecting stand-alone ratings and recommendations sites with general social media spaces like Facebook, Twitter, and LinkedIn, and of providing mobile interfaces which enable users to provide updates and ratings directly from the locations they happen to be visiting. In this report, we profile the following sites: * TripAdvisor, the international market leader for travel ratings and recommendations sites, with a membership of some 11 million users; * IgoUgo, the other leading site in this field, which aims to distinguish itself from the market leader by emphasising the quality of its content; * Zagat, a long-established publisher of restaurant guides which has translated its crowdsourcing model from the offline to the online world; * Lonely Planet’s Thorn Tree site, which attempts to respond to the rise of these travel communities by similarly harnessing user-generated content; * Stayz, which attempts to enhance its accommodation search and booking services by incorporating ratings and reviews functionality; and * BigVillage, an Australian-based site attempting to cater for a particularly discerning niche of travellers; * Dopplr, which connects travel and social networking in a bid to pursue the lucrative market of frequent and business travellers; * Foursquare, which builds on its mobile application to generate a steady stream of ‘check-ins’ and recommendations for hospitality and other services around the world; * Suite 101, which uses a revenue-sharing model to encourage freelance writers to contribute travel writing (amongst other genres of writing); * Yelp, the global leader in general user-generated product review and recommendation services. In combination, these profiles provide an overview of current developments in the travel ratings and recommendations space (and beyond), and offer an outlook for further possibilities. While no doubt affected by the global financial downturn and the reduction in travel that it has caused, travel ratings and recommendations remain important – perhaps even more so if a reduction in disposable income has resulted in consumers becoming more critical and discerning. The aggregated word of mouth from many tens of thousands of travellers which these sites provide certainly has a substantial influence on their users. Using these sites to research travel options has now become an activity which has spread well beyond the digirati. The same is true also for many other consumer industries, especially where there is a significant variety of different products available – and so, this report may also be read as a case study whose findings are able to be translated, mutatis mutandis, to purchasing decisions from household goods through consumer electronics to automobiles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biotites and muscovites from a gneiss have been experimentally shocked between 18 and 70 GPa using powder-propellant guns at NASA Johnson Space Center and at the California Institute of Technology. This study shows that shock in biotite and muscovite can produce homogeneous and devolatilized glasses within microseconds. Shock-deformed micas display fracturing, kinking, and complex extinction patterns over the entire pressure range investigated. However, these deformation features are not a sensitive pressure indicator. Localized melting of micas begins at 33 GPa and goes to completion at 70 GPa. Melted biotite and muscovite are optically opaque, but show extensive microvesiculation and flow when observed with the SEM. Electron diffraction confirms that biotite and muscovite have transformed to a glass. The distribution of vesicles in shock-vitrified mica shows escape of volatiles within the short duration of the shock experiment. Experimentally shocked biotite and muscovite undergo congruent melting. Compositions of the glasses are similar to the unshocked micas except for volatiles (H2O loss and K loss). These unusual glasses derived from mica may be quenched by rapid cooling conditions during the shock experiment. Based on these results, the extremely low H2O content of tektites may be reconciled with a terrestrial origin by impact. Release of volatiles in shock-melted micas affects the melting behavior of coexisting dry silicates during the short duration of the shock experiment. Transportation and escape of volatiles released from shock-melted micas may provide plausible mechanisms for the origin of protoatmospheres on terrestrial planets, hydrothermal activity on phyllosilicate-rich meteorite parent bodies, and fluid entrapment in meteorites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chondritic porous aggregates (CPA's) belong to an important subset of small particles (usually between 5 and 50 micrometers) collected from the stratosphere by high flying aircraft. These aggregates are approximately chondritic in elemental abundance and are composed of many thousands of small­er, submicrometer particles. CPA particles have been the subject of intensive study during the past few years [1-3] and there is strong evidence that they are a new class of extraterrestrial material not represented in the meteorite collection [3,4]. However, CPA's may be related to carbonaceous chondrites and in fact, both may be part of a continuum of primitive extraterrestrial materials [5]. The importance of CPA's stems from suggestions that they are very primitive solar system material possibly derived from early formed proto­ planets, chondritic parent bodies, or comets [3, 6]. To better understand the origin and evolution of these particles, we have attempted to summarize all of the mineralogical data on identified CPA's published since about 1976.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Platey grains of cubic Bi2O3, α-Bi2O3, and Bi2O2.75 nanograins were associated with chondritic porous interplanetary dust particles W7029C1, W7029E5, and 2011C2 that were collected in the stratosphere at 17-19 km altitude. Similar Bi oxide nanograins were present in the upper stratosphere during May 1985. These grains are linked to the plumes of several major volcanic eruptions during the early 1980s that injected material into the stratosphere. The mass of sulfur from these eruptions is a proxy for the mass of stratospheric Bi from which we derive the particle number densities (p m -3) for "average Bi2O3 nanograins" due to this volcanic activity and those necessary to contaminate the extraterrestrial chondritic porous interplanetary dust particles via collisional sticking. The match between both values supports the idea that Bi2O3 nanograins of volcanic origin could contaminate interplanetary dust particles in the Earth's stratosphere. Copyright 1997 by the American Geophysical Union.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analytical electron microscopy on individual grains from a portion of a chondritic porous interplanetary dust particle (aggregate W7029C1 from the NASA Johnson Space Center Cosmic Dust Collection) shows that layer silicates compose 50 percent of the silicate fraction examined. These layer silicates can be classified into two distinct crystallochemical groups: (1) fine-grained, polycrystalline smectite minerals; and (2) well-ordered, single crystals of kaolinite and Mg-poor talc. The layer silicates in this portion of sample W7029(asterisk)A are dissimilar to those described in other chondritic porous aggregates. The predominant layer silicate assemblage in W7029(asterisk)A indicates that heating of the aggregate during atmospheric entry was brief and probably to a temperature less than 300C. Comparison with terrestrial phyllosilicate occurrences suggests that some layer silicates in aggregate W7029(asterisk)A may have been formed by alteratiton from preexisting silicate minerals at low temperatures (less than 25C) after aggregate formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large Igneous Provinces are exceptional intraplate igneous events throughout Earth’s history. Their significance and potential global impact is related to the total volume of magma intruded and released during these geologically brief events (peak eruptions are often within 1-5 Myrs duration) where millions to tens of millions of cubic kilometers of magma are produced. In some cases, at least 1% of the Earth’s surface has been directly covered in volcanic rock, being equivalent to the size of small continents with comparable crustal thicknesses. Large Igneous Provinces are thus important, albeit episodic episodes of new crust addition. However, most magmatism is basaltic so that contributions to crustal growth will not always be picked up in zircon geochronology studies that better trace major episodes of extension-related silicic magmatism and the silicic Large Igneous Provinces. Much headway has been made on our understanding of these anomalous igneous events over the last 25 years, driving many new ideas and models. This includes their: 1) global spatial and temporal distribution, with a long-term average of one event approximately every 20 Myrs, but a clear clustering of events at times of supercontinent break-up – Large Igneous Provinces are thus an integral part of the Wilson cycle and are becoming an increasingly important tool in reconnecting dispersed continental fragments; 2) compositional diversity that in part reflects their crustal setting of ocean basins, and continental interiors and margins where in the latter setting, LIP magmatism can be silicicdominant; 3) mineral and energy resources with major PGE and precious metal resources being hosted in these provinces, as well as magmatism impacting on the hydrocarbon potential of volcanic basins and rifted margins through enhancing source rock maturation, providing fluid migration pathways, and trap formation; 4) biospheric, hydrospheric and atmospheric impacts, with Large Igneous Provinces now widely regarded as a key trigger mechanism for mass extinctions, although the exact kill mechanism(s) are still being resolved; 5) role in mantle geodynamics and thermal evolution of the Earth, by potentially recording the transport of material from the lower mantle or core-mantle boundary to the Earth's surface and being a fundamental component in whole mantle convection models; and 6) recognition on the inner planets where the lack of plate tectonics and erosional processes and planetary antiquity means that the very earliest record of LIP events during planetary evolution may be better preserved than on Earth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent advances in computational geodynamics are applied to explore the link between Earth’s heat, its chemistry and its mechanical behavior. Computational thermal-mechanical solutions are now allowing us to understand Earth patterns by solving the basic physics of heat transfer. This approach is currently used to solve basic convection patterns of terrestrial planets. Applying the same methodology to smaller scales delivers promising similarities between observed and predicted structures which are often the site of mineral deposits. The new approach involves a fully coupled solution to the energy, momentum and continuity equations of the system at all scales, allowing the prediction of fractures, shear zones and other typical geological patterns out of a randomly perturbed initial state. The results of this approach are linking a global geodynamic mechanical framework over regional-scale mineral deposits down to the underlying micro-scale processes. Ongoing work includes the challenge of incorporating chemistry into the formulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 21st century will see monumental change. Either the human race will use its knowledge and skills and change the way it interacts with the environment, or the environment will change the way it interacts with its inhabitants. In the first case, the focus of this book, we would see our sophisticated understanding in areas such as physics, chemistry, engineering, biology, planning, commerce, business and governance accumulated over the last 1,000 years brought to bear on the challenge of dramatically reducing our pressure on the environment. The second case however is the opposite scenario, involving the decline of the planet’s ecosystems until they reach thresholds where recovery is not possible, and following which we have no idea what happens. For instance, if we fail to respond to Sir Nicolas Stern’s call to meet appropriate stabilisation trajectories for greenhouse gas emissions, and we allow the average temperature of our planets surface to increase by 4-6 degrees Celsius, we will see staggering changes to our environment, including rapidly rising sea level, withering crops, diminishing water reserves, drought, cyclones, floods… allowing this to happen will be the failure of our species, and those that survive will have a deadly legacy. In this update to the 1997 International Best Seller, Factor Four, Ernst von Weizsäcker again leads a team to present a compelling case for sector wide advances that can deliver significant resource productivity improvements over the coming century. The purpose of this book is to inspire hope and to then inform meaningful action in the coming decades to respond to the greatest challenge our species has ever faced – that of living in harmony with our planet and its other inhabitants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Archimedes is reported as famously saying: 'Give me a place to stand and I will move the earth.' He was referring to the power of levers. His point was that a person of ordinary capacity with a place to stand, a fulcrum and a level could change the path of planets. This principle of physics is a metaphor for how the common law has moved over the last millennium. Courts have found a stable foundation on which to stand, such as the constitutional bedrock or well-grounded precedent, and, using cases as fulcrums and legal principles as levers, the have moved the law. Australia is at a critical juncture in the development of the law of charities. The High Court of Australia has held that political purposes can be charitable in certain circumstances. The Parliament of Australia has not only enshrined this in a statutory definition of charity but has done so with a preamble to the legislation which affirms the basis for this development in residing in the 'unique nature and diversity of charities and the distinctive and important role that they play in Australia'.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Through a consideration of audience experience of embodiment in contemporary dance performance, this project used kinesthetic empathy as a theoretical construct to inform choreographic decision-making. The research outcome challenged the traditional performer/audience relationship through an interactive dance performance work entitled Planets. This acted as a platform that allowed both audience and performer to collaboratively listen to, process and form movement in a shared kinesthetic state. This connection was enabled through the distribution of interactive art objects, which responded to the shifting proximity between performer and audience. The performance was thus experienced through following a shared goal as instigated by the interactive technology. Through practice-led research, knowledge from kinesthetic empathy, embodied cognition and the mirror neuron system were used to develop the project’s aim in encouraging interactive audiences to engage in movement. This aim influenced studio explorations of movement through an enquiry into the kinesthetic self in dance. Investigations used movement quality, tension, mobility and acceleration to access a familiar movement vocabulary appropriate for a broad interactive audience. This informed the role of the researcher as performer. Planets was developed as a collaborative project between Michael Smith and interactive visual designer Andy Bates and performed over three nights at the Ars Electronica Festival 2014 in Linz, Austria. Supported by documented footage from Planets and audience responses to the performances, this paper draws together the theoretical underpinnings behind the development of the work and includes the experiential perspective of the performer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Field and Service Robotics (FSR) conference is a single track conference with a specific focus on field and service applications of robotics technology. The goal of FSR is to report and encourage the development of field and service robotics. These are non-factory robots, typically mobile, that must operate in complex and dynamic environments. Typical field robotics applications include mining, agriculture, building and construction, forestry, cargo handling and so on. Field robots may operate on the ground (of Earth or planets), under the ground, underwater, in the air or in space. Service robots are those that work closely with humans, importantly the elderly and sick, to help them with their lives. The first FSR conference was held in Canberra, Australia, in 1997. Since then the meeting has been held every 2 years in Asia, America, Europe and Australia. It has been held in Canberra, Australia (1997), Pittsburgh, USA (1999), Helsinki, Finland (2001), Mount Fuji, Japan (2003), Port Douglas, Australia (2005), Chamonix, France (2007), Cambridge, USA (2009), Sendai, Japan (2012) and most recently in Brisbane, Australia (2013). This year we had 54 submissions of which 36 were selected for oral presentation. The organisers would like to thank the international committee for their invaluable contribution in the review process ensuring the overall quality of contributions. The organising committee would also like to thank Ben Upcroft, Felipe Gonzalez and Aaron McFadyen for helping with the organisation and proceedings. and proceedings. The conference was sponsored by the Australian Robotics and Automation Association (ARAA), CSIRO, Queensland University of Technology (QUT), Defence Science and Technology Organisation Australia (DSTO) and the Rio Tinto Centre for Mine Automation, University of Sydney.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solar flares were first observed by plain eye in white light by William Carrington in England in 1859. Since then these eruptions in the solar corona have intrigued scientists. It is known that flares influence the space weather experienced by the planets in a multitude of ways, for example by causing aurora borealis. Understanding flares is at the epicentre of human survival in space, as astronauts cannot survive the highly energetic particles associated with large flares in high doses without contracting serious radiation disease symptoms, unless they shield themselves effectively during space missions. Flares may be at the epicentre of man s survival in the past as well: it has been suggested that giant flares might have played a role in exterminating many of the large species on Earth, including dinosaurs. Having said that prebiotic synthesis studies have shown lightning to be a decisive requirement for amino acid synthesis on the primordial Earth. Increased lightning activity could be attributed to space weather, and flares. This thesis studies flares in two ways: in the spectral and the spatial domain. We have extracted solar spectra using three different instruments, namely GOES (Geostationary Operational Environmental Satellite), RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) and XSM (X-ray Solar Monitor) for the same flares. The GOES spectra are low resolution obtained with a gas proportional counter, the RHESSI spectra are higher resolution obtained with Germanium detectors and the XSM spectra are very high resolution observed with a silicon detector. It turns out that the detector technology and response influence the spectra we see substantially, and are important to understanding what conclusions to draw from the data. With imaging data, there was not such a luxury of choice available. We used RHESSI imaging data to observe the spatial size of solar flares. In the present work the focus was primarily on current solar flares. However, we did make use of our improved understanding of solar flares to observe young suns in NGC 2547. The same techniques used with solar monitors were applied with XMM-Newton, a stellar X-ray monitor, and coupled with ground based Halpha observations these techniques yielded estimates for flare parameters in young suns. The material in this thesis is therefore structured from technology to application, covering the full processing path from raw data and detector responses to concrete physical parameter results, such as the first measurement of the length of plasma flare loops in young suns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis concerns the dynamics of nanoparticle impacts on solid surfaces. These impacts occur, for instance, in space, where micro- and nanometeoroids hit surfaces of planets, moons, and spacecraft. On Earth, materials are bombarded with nanoparticles in cluster ion beam devices, in order to clean or smooth their surfaces, or to analyse their elemental composition. In both cases, the result depends on the combined effects of countless single impacts. However, the dynamics of single impacts must be understood before the overall effects of nanoparticle radiation can be modelled. In addition to applications, nanoparticle impacts are also important to basic research in the nanoscience field, because the impacts provide an excellent case to test the applicability of atomic-level interaction models to very dynamic conditions. In this thesis, the stopping of nanoparticles in matter is explored using classical molecular dynamics computer simulations. The materials investigated are gold, silicon, and silica. Impacts on silicon through a native oxide layer and formation of complex craters are also simulated. Nanoparticles up to a diameter of 20 nm (315000 atoms) were used as projectiles. The molecular dynamics method and interatomic potentials for silicon and gold are examined in this thesis. It is shown that the displacement cascade expansionmechanism and crater crown formation are very sensitive to the choice of atomic interaction model. However, the best of the current interatomic models can be utilized in nanoparticle impact simulation, if caution is exercised. The stopping of monatomic ions in matter is understood very well nowadays. However, interactions become very complex when several atoms impact on a surface simultaneously and within a short distance, as happens in a nanoparticle impact. A high energy density is deposited in a relatively small volume, which induces ejection of material and formation of a crater. Very high yields of excavated material are observed experimentally. In addition, the yields scale nonlinearly with the cluster size and impact energy at small cluster sizes, whereas in macroscopic hypervelocity impacts, the scaling 2 is linear. The aim of this thesis is to explore the atomistic mechanisms behind the nonlinear scaling at small cluster sizes. It is shown here that the nonlinear scaling of ejected material yield disappears at large impactor sizes because the stopping mechanism of nanoparticles gradually changes to the same mechanism as in macroscopic hypervelocity impacts. The high yields at small impactor size are due to the early escape of energetic atoms from the hot region. In addition, the sputtering yield is shown to depend very much on the spatial initial energy and momentum distributions that the nanoparticle induces in the material in the first phase of the impact. At the later phases, the ejection of material occurs by several mechanisms. The most important mechanism at high energies or at large cluster sizes is atomic cluster ejection from the transient liquid crown that surrounds the crater. The cluster impact dynamics detected in the simulations are in agreement with several recent experimental results. In addition, it is shown that relatively weak impacts can induce modifications on the surface of an amorphous target over a larger area than was previously expected. This is a probable explanation for the formation of the complex crater shapes observed on these surfaces with atomic force microscopy. Clusters that consist of hundreds of thousands of atoms induce long-range modifications in crystalline gold.