1000 resultados para PHYTOPLANKTON PATCHINESS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distribution of dimethylsulfide (DMS) and/or particulate dimethylsulfoniopropionate (DMSPp) concentrations in the Jiaozhou Bay, Zhifu Bay and East China Sea were investigated during the period of 1994 - 1998. Both DMS and DMSPp levels showed remarkable temporal and spatial variations. High values occurred in the coastal or shelf waters and low values in the offshore waters. The highest levels were observed in spring or summer and lowest in autumn. DMS or DMSPp distribution patterns were associated with water mass on a large geographical scale, while biological and chemical factors were more likely influential on smaller-scale variations. Diatoms could play an important role in total DMS or DMSPp abundance in coastal waters. Nitrate was found to have a two-phase relationship with DMSPp concentrations: positive when nitrate concentration was lower than 1 mumol/L, and negative when it was above. Anthropogenic factors such as sewage input and aquaculture also showed influences on DMS or DMSPp concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During spring (April/May 1999) and autumn (September/October 1998) cruises in the Bohai Sea, China, copepods were the dominant components of mesozooplankton, the most abundant species being Calanus sinicus, Centropages mcmurrichi, Paracalanus parvus, Acartia bifilosa and Oithona similis. Pigment ingestion rates by three size classes of copepods (200-500, 500-1000 and > 1000 mum) were measured. In the south of the investigation area, gut pigment content (GPC), individual pigment-specific ingestion rates and grazing impacts on phytoplankton were lower in spring than in autumn. In the central area, GPC and individual pigment-specific ingestion rates were higher in spring than in autumn. The grazing impact on phytoplankton by the copepod assemblages was lower in spring than in autumn, however, because of the relatively smaller biomass in spring. In the western area where the Bohai Sea joins the Yellow Sea, GPC, individual pigment-specific ingestion rates and grazing impacts on phytoplankton were higher in spring than in autumn. Among the three size groups, the small-sized animals (200-500 mum) contributed more than 50% (range 38-98%) of the total copepod grazing during both cruises. The grazing impact on phytoplankton by copepods was equivalent to 11.9% (range 3.0-37.1%) of the chlorophyll-a standing stock and 53.3% (range 21.4-91.4%) of the primary production during the spring cruise. Grazing impact was equivalent to 6.3% (range 2.0-11.6%) of the chlorophyll-a standing stock and >100% (range 25.7-141.6%) of the primary production during the autumn cruise. The copepod community apparently consumed only a modest proportion of the standing stock of phytoplankton during spring and autumn blooms. They did, however, sometimes graze a significant proportion of daily primary production and hence were presumably able to limit the rate of further accumulation of phytoplankton, or even to prevent it. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cruise was undertaken from 3rd to 8th November 2004 in Changjiang (Yangtze) River Estuary and its adjacent waters to investigate the spatial biomass distribution and size composition of phytoplankton. Chlorophyll-a (Chl-a) concentration ranged 0.42-1.17 mu g L-1 and 0.41-10.43 mu g L-1 inside and outside the river mouth, with the mean value 0.73 mu g L-1 and 1.86 mu g L-1, respectively. Compared with the Chl-a concentration in summer of 2004, the mean value was much lower inside, and a little higher outside the river mouth. The maximal Chl-a was 10.43 mu g L-1 at station 18 (122.67 degrees E, 31.25 degrees N), and the region of high Chl-a concentration was observed in the central survey area between 122.5 degrees E and 123.0 degrees E. In the stations located east of 122.5 degrees E, Chl-a concentration was generally high in the upper layers above 5 m due to water stratification. In the survey area, the average Chl-a in sizes of > 20 mu m and < 20 mu m was 0.28 mu g L-1 and 1.40 mu g L-1, respectively. High Chl-a concentration of < 20 mu m size-fraction indicated that the nanophytoplankton and picophytoplankton contributed the most to the biomass of phytoplankton. Skeletonema costatum, Prorocentrum micans and Scrippsiella trochoidea were the dominant species in surface water. The spatial distribution of cell abundance of phytoplankton was patchy and did not agree well with that of Chl-a, as the cell abundance could not distinguish the differences in shape and size of phytoplankton cells. Nitrate and silicate behaved conservatively, but the former could probably be the limitation factor to algal biomass at offshore stations. The distribution of phosphate scattered considerably, and its relation to the phytoplankton biomass was complicated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dilution experiments were performed to examine the growth and grazing mortality rates of picophytoplankton (< 2 mu m), nanophytoplankton (2-20 mu m), and microphytoplankton (> 20 mu m) at stations in the Chesapeake Bay (CB), the Delaware Inland Bays (DIB) and the Delaware Bay (DB), in early spring 2005. At station CB microphytoplankton, including chain-forming diatoms were dominant, and the microzooplankton assemblage was mainly composed of the tintinnid Tintinnopsis beroidea. At station DIB, the dominant species were microphytoplanktonic dinoflagellates, while the microzooplankton community was mainly composed of copepod nauplii and the oligotrich ciliate Strombidium sp. At station DB, nanophytoplankton were dominant components, and Strombidium and Tintinnopsis beroidea were the co-dominant microzooplankton. The growth rate and grazing mortality rate were 0.13-3.43 and 0.09-1.92 d(-1) for the different size fractionated phytoplankton. The microzooplankton ingested 73, 171, and 49% of standing stocks, and 95, 70, and 48% of potential primary productivity for total phytoplankton at station CB, DIB, and DB respectively. The carbon flux for total phytoplankton consumed by microzooplankton was 1224.11, 100.76, and 85.85 mu g C 1(-1) d(-1) at station CB, DIB, and DB, respectively. According to the grazing mortality rate, carbon consumption rate and carbon flux turn over rates, microzooplankton in study area mostly preferred to graze on picophytoplankton, which was faster growing but was lowest biomass component of the phytoplankton. The faster grazing on Fast-Growing-Low-Biomass (FGLB) phenomenon in coastal regions is explained as a resource partitioning strategy. This quite likely argues that although microzooplankton grazes strongly on phytoplankton in these regions, these microzooplankton grazers are passive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The source and significance. of two mitrients, nitrogen. and phosphorous, were investigated by a modified dilution method performed on seawater samples from the Jiaozhou Bay in autumn 2004. This modified dilution method accounted for the phytoplankton growth rate, microzooplankton grazing mortality rate, the external nutrient pools, as well as nutrient supplied through remineralization by microzooplankton. The results indicated that the phytoplankton net growth rate increased in turn from inside the bay, to outside the bay, to in the Xiaogang Harbor. The phytoplankton, maximum growth rates and microzooplankton grazing mortality rates were 1.14 and 0.92 d(-1) outside the bay, 0.42 and 0.32 d(-1) inside the bay and 0.98 and 0.62 d(-1) in the harbor respectively. Outside the bay, the remineralized nitrogen (K-r = 24.49) had heavy influence on the growth of the phytoplankton. Inside the bay, the remineralized phosphorus(K-r = 3.49) strongly affected the phytoplankton growth. In the harbor, the remineralized phosphorus (K-r = 3.73) was in larger demand by phytoplankton growth. The results demonstrated that the different nutrients pools supplied for phytoplankton growth were greatly in accordance with the phytoplankton community structure, microzooplankton grazing mortality rates and environmental conditions. It is revealed that, nutrient remineralization is much more important for the phytoplankton growth in the Jiaozhou Bay than previously believed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nutrient input from the Changjiang River (Yangtze River) has been increasing dramatically since the 1960s. At the mouth of the Changjiang River, the nitrate concentration has increased about three-fold in 40 years, from 20.5 mu mol/L in the 1960s to 59.1 mu mol/L in the 1980s and to 80.6 mu mol/L in 1990-2004. Phosphate concentration increased by a factor of 30%, from 0.59 mu mol/L in the 1980s to 0.77 mu mol/L in 1990-2004. The increasing nitrate input has arisen mostly from the mid and lower reaches of the Changjiang River, where the river meets one of the most strongly developed agriculture areas in China. Responses of the coastal phytoplankton community to the increasing nutrient inputs are also seen in the available monitoring data. First, a trend of increasing phytoplankton standing stock from 1984 to 2002 appeared in the Changjiang River estuary and adjacent coastal waters, especially in late spring. Secondly, the proportion of diatoms in the whole phytoplankton community showed a decreasing trend from about 85% in 1984 to about 60% in 2000. Finally, red tides/harmful algal blooms increased dramatically in this area in terms of both number and scale. About 30-80 red tide events were recorded each year from 2000 to 2005 in the East China Sea. The scale of some blooms has been in excess of 10,000 km(2). (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systematic studies of the changes in dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) and their effects on phytoplankton over the last 30 years in the Bohai Sea are presented. The amount of sewage disposal, use of fertilizer and the Huanghe River runoff were found to have a significant influence on the DIN or DIP concentrations in the Bohai Sea over the last 30 years. Moreover, the changes in DIN and DIP resulted in changes in the limiting nutrients of phytoplankton in the Bohai Sea from nitrogen in the early 1980s to nitrogen-phosphorus in the late 1980s, and then to phosphorus after the 1990s. In addition, changes in nitrogen and phosphorus had a significant effect on the phytoplankton community structure. The half saturation constant (K (s)) was used to evaluate the effect of nutrients on the phytoplankton community structure in the Bohai Sea over the last 30 years. Cell abundance percentages of dominant phytoplankton species with high K (s) values for phosphorus and low K (s) values for nitrogen have decreased since the 1980s, while those of dominant phytoplankton species with low K (s) values for phosphorus and high K (s) values for nitrogen increased during this period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dilution incubations and Calanus sinicus addition incubations were simultaneously conducted at five stations in the Yellow Sea in June of 2004 to evaluate the impact of microzooplankton and Calanus sinicus on phytoplankton based on the Chlorophyll a (Chl-a) levels. The Chl-a growth rates (k) ranged from 0.60-1.67 d(-1), while microzooplankton grazed the Chl-a at rates (g) of 0.29-0.62 d(t-1). The addition of C. sinicus enhanced the Chl-a growth rate (Z) by 0.004-0.037 d(-1) ind.(-1) L. C. sinicus abundance ranged from 84.1-160.9 ind. m(-3), which occupied 90.7%-99.1% of the copepod (> 500 mu m) population. The in-situ increase in phytoplankton by C. sinicus community was estimated to be 0.000 4-0.005 9 d(-1). These results showed that microzooplankton were the main grazers of phytoplankton, while C. sinicus induced a slight increase in the levels of phytoplankton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both nitrate (NO (3) (-) ) and soluble reactive phosphate (PO (4) (3-) ) concentration in the freshwater end-member at the mouth of the Changjiang River have increased dramatically since the 1960s. Within the same period in the sea area, with surface salinity > 30, NO (3) (-) concentration has shown an obvious increase, PO (4) (3-) has not changed greatly and dissolved reactive silica (SiO (3) (2-) ) has deceased dramatically. An examination of the elemental ratio of NO (3) (-) to PO (4) (3-) at the mouth of the Changjiang River did not show a systematic trend from the 1960s to 2000s largely because both nutrients increased simultaneously. In comparison, the elemental ratio of dissolved inorganic nitrogen (DIN) to PO (4) (3-) in surface seawater, with salinity > 22, has shown a clearly increasing trend. Furthermore, an overall historical change of the SiO (3) (2-) :PO (4) (3-) ratio has undergone a reverse trend in this area. Based on the changes of SiO (3) (2-) :PO (4) (3-) and DIN:PO (4) (3-) ratios, we can conclude that an overall historical change of SiO (3) (2-) :DIN ratio has decreased in this area from the 1950-1960s to 2000s. The argument that phytoplankton productivity in the Changjiang estuary has been enhanced by increasing nutrient input from the riverine transport was supported by these results. A comparative study analyzing the shift of phytoplankton composition from the mid-1980s to 2000s was also made. The results indicated that the average yearly percentage of diatom species in the Changjiang estuary has decreased from 84.6% during 1985-1986 to 69.8% during 2004-2005. Furthermore, the average yearly percentage of diatom abundance in the Changjiang estuary decreased from 99.5% during to 75.5% over the same time period, while the abundance of dinoflagellates has increased dramatically, from 0.7% to 25.4%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dilution and copepod addition incubations were conducted in the Yellow Sea (June) and the East China Sea (September) in 2003. Microzooplankton grazing rates were in the range of 0.37-0.83 d(-1) stopin most of the experiments (except at Station A3). Correspondingly, 31-50% of the chlorophyll a (Chl a) stock and 81-179% of the Chl a production was grazed by microzooplankton. At the end of 24 h copepod addition incubations, Chl a concentrations were higher in the copepod-added bottles than in the control bottles. The Chl a growth rate in the bottles showed good linear relationship with added copepod abundance. The presence of copepods could enhance the Chl a growth at a rate (Z) of 0.03-0.25 (on average 0.0691) d(-1) ind(-1) l. This study, therefore parallels many others, which show that microzooplankton are the main grazers of primary production in the sea, whereas copepods appear to have little direct role in controlling phytoplankton.