911 resultados para PHOTONIC REPORTER


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A promising approach to the fabrication of materials with nanoscale features is the transfer of liquid-crystalline structure to polymers. However, this has not been achieved in systems with full three-dimensional periodicity. Here we demonstrate the fabrication of self-assembled three-dimensional nanostructures by polymer templating blue phase I, a chiral liquid crystal with cubic symmetry. Blue phase I was photopolymerized and the remaining liquid crystal removed to create a porous free-standing cast, which retains the chiral three-dimensional structure of the blue phase, yet contains no chiral additive molecules. The cast may in turn be used as a hard template for the fabrication of new materials. By refilling the cast with an achiral nematic liquid crystal, we created templated blue phases that have unprecedented thermal stability in the range-125 to 125°C, and that act as both mirrorless lasers and switchable electro-optic devices. Blue-phase templated materials will facilitate advances in device architectures for photonics applications in particular. © 2012 Macmillan Publishers Limited. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a novel utilization of periodic arrays of carbon nanotubes in the realization of diffractive photonic crystal lenses. Carbon nanotube arrays with nanoscale dimensions (lattice constant 400 nm and tube radius 50 nm) displayed a negative refractive index in the optical regime where the wavelength is of the order of array spacing. A detailed computational analysis of band gaps and optical transmission through the nanotubes based planar, convex and concave shaped lenses was performed. Due to the negative-index these lenses behaved in an opposite fashion compared to their conventional counter parts. A plano-concave lens was established and numerically tested, displaying ultra-small focal length of 1.5 μm (∼2.3 λ) and a near diffraction-limited spot size of 400 nm (∼0.61 λ). © 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon is now firmly established as a high performance photonic material. Its only weakness is the lack of a native electrically driven light emitter that operates CW at room temperature, exhibits a narrow linewidth in the technologically important 1300-1600 nm wavelength window, is small and operates with low power consumption. Here, an electrically pumped all-silicon nano light source around 1300-1600 nm range is demonstrated at room temperature. Using hydrogen plasma treatment, nano-scale optically active defects are introduced into silicon, which then feed the photonic crystal nanocavity to enhance the electrically driven emission in a device via Purcell effect. A narrow (Δλ=0.5 nm) emission line at 1515 nm wavelength with a power density of 0.4mW/cm2 is observed, which represents the highest spectral power density ever reported from any silicon emitter. A number of possible improvements are also discussed, that make this scheme a very promising light source for optical interconnects and other important silicon photonics applications. © 2012 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the enhancement of sub-bandgap photoluminescence from silicon via the Purcell effect. We couple the defect emission from silicon, which is believed to be due to hydrogen incorporation into the lattice, to a photonic crystal (PhC) nanocavity. We observe an up to 300-fold enhancement of the emission at room temperature at 1550 nm, as compared to an unpatterned sample, which is then comparable to the silicon band-edge emission. We discuss the possibility of enhancing this emission even further by introducing additional defects by ion implantation, or by treating the silicon PhC nanocavity with hydrogen plasma. © 2011 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the electrical properties of Silicon-on-Insulator photonic crystals as a function of doping level and air filling factor. A very interesting trade-off between conductivity and optical losses in L3 cavities is also found. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a photonic crystal cavity and a hydrogen plasma treatment, we enhance the photoluminescence (PL) from optically active defects in silicon by a factor of 3000 compared to the as-bought material at room temperature. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Far-field optimized photonic crystal nanocavities are used to strongly increase light generation from crystalline silicon. Low-power continuous-wave harmonic generation as well as efficient room temperature light-emission from optically-active defects are demonstrated in these devices. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon is known to be a very good material for the realization of high-Q, low-volume photonic cavities, but at the same it is usually considered as a poor material for nonlinear optical functionalities like second-harmonic generation, because its second-order nonlinear susceptibility vanishes in the dipole approximation. In this work we demonstrate that nonlinear optical effects in silicon nanocavities can be strongly enhanced and even become macroscopically observable. We employ photonic crystal nanocavities in silicon membranes that are optimized simultaneously for high quality factor and efficient coupling to an incoming beam in the far field. Using a low-power, continuous-wave laser at telecommunication wavelengths as a pump beam, we demonstrate simultaneous generation of second- and third harmonics in the visible region, which can be observed with a simple camera. The results are in good agreement with a theoretical model that treats third-harmonic generation as a bulk effect in the cavity region, and second-harmonic generation as a surface effect arising from the vertical hole sidewalls. Optical bistability is also observed in the silicon nanocavities and its physical mechanisms (optical, due to two-photon generation of free carriers, as well as thermal) are investigated. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strongly enhanced light emission at wavelengths between 1.3 and 1.6 μm is reported at room temperature in silicon photonic crystal (PhC) nanocavities with optimized out-coupling efficiency. Sharp peaks corresponding to the resonant modes of PhC nanocavities dominate the broad sub-bandgap emission from optically active defects in the crystalline Si membrane. We measure a 300-fold enhancement of the emission from the PhC nanocavity due to a combination of far-field enhancement and the Purcell effect. The cavity enhanced emission has a very weak temperature dependence, namely less than a factor of 2 reduction between 10 K and room temperature, which makes this approach suitable for the realization of efficient light sources as well as providing a quick and easy tool for the broadband optical characterization of silicon-on-insulator nanostructures. © 2011 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the electrical properties of silicon-on-insulator (SOI) photonic crystals as a function of both doping level and air filling factor. The resistance trends can be clearly explained by the presence of a depletion region around the sidewalls of the holes that is caused by band pinning at the surface. To understand the trade-off between the carrier transport and the optical losses due to free electrons in the doped SOI, we also measured the resonant modes of L3 photonic crystal nanocavities and found that surprisingly high doping levels, up to 1018 / cm3, are acceptable for practical devices with Q factors as high as 4× 104. © 2011 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present experimental measurements on Silicon-on-insulator (SOI) photonic crystal slabs with an active layer containing Er3+ ions-doped Silicon nanoclusters (Si-nc), showing strong enhancement of 1.54 μm emission at room temperature. We provide a systematic theoretical analysis to interpret such results. In order to get further insight, we discuss experimental data on the guided luminescence of unpatterned SOI planar slot waveguides, which show enhanced light emission in transverse-magnetic (TM) modes over transverse-electric (TE) ones. ©2007 IEEE.